scholarly journals 3D attenuation image of fluid storage and tectonic interactions across the Pollino fault network

Author(s):  
P Sketsiou ◽  
L De Siena ◽  
S Gabrielli ◽  
F Napolitano

Summary The Pollino range is a region of slow deformation where earthquakes generally nucleate on low-angle normal faults. Recent studies have mapped fault structures and identified fluid-related dynamics responsible for historical and recent seismicity in the area. Here, we apply the coda-normalization method at multiple frequencies and scales to image the 3D P-wave attenuation (QP) properties of its slowly-deforming fault network. The wide-scale average attenuation properties of the Pollino range are typical for a stable continental block, with a dependence of QP on frequency of $Q_P^{-1}=(0.0011\pm 0.0008) f^{(0.36\pm 0.32)}$. Using only waveforms comprised in the area of seismic swarms, the dependence of attenuation on frequency increases ($Q_P^{-1}=(0.0373\pm 0.0011) f^{(-0.59\pm 0.01)}$), as expected when targeting seismically-active faults. A shallow very-low-attenuation anomaly (max depth of 4-5 km) caps the seismicity recorded within the western cluster 1 of the Pollino seismic sequence (2012, maximum magnitude MW = 5.1). High-attenuation volumes below this anomaly are likely related to fluid storage and comprise the western and northern portions of cluster 1 and the Mercure basin. These anomalies are constrained to the NW by a sharp low-attenuation interface, corresponding to the transition towards the eastern unit of the Apennine Platform under the Lauria mountains. The low-seismicity volume between cluster 1 and cluster 2 (maximum magnitude MW = 4.3, east of the primary) shows diffuse low-to-average attenuation features. There is no clear indication of fluid-filled pathways between the two clusters resolvable at our resolution. In this volume, the attenuation values are anyway lower than in recognized low-attenuation blocks, like the Lauria Mountain and Pollino Range. As the volume develops in a region marked at surface by small-scale cross-faulting, it suggests no actual barrier between clusters, more likely a system of small locked fault patches that can break in the future. Our model loses resolution at depth, but it can still resolve a 5-to-15-km-deep high-attenuation anomaly that underlies the Castrovillari basin. This anomaly is an ideal deep source for the SE-to-NW migration of historical seismicity. Our novel deep structural maps support the hypothesis that the Pollino sequence has been caused by a mechanism of deep and lateral fluid-induced migration.

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. MR153-MR171 ◽  
Author(s):  
Linsen Zhan ◽  
Jun Matsushima

The nonintuitive observation of the simultaneous high velocity and high attenuation of ultrasonic waves near the freezing point of brine was previously measured in partially frozen systems. However, previous studies could not fully elucidate the attenuation variation of ultrasonic wave propagation in a partially frozen system. We have investigated the potential attenuation mechanisms responsible for previously obtained laboratory results by modeling ultrasonic wave transmission in two different partially frozen systems: partially frozen brine (two phases composed of ice and unfrozen brine) and unconsolidated sand (three phases composed of ice, unfrozen brine, and sand). We adopted two different rock-physics models: an effective medium model for partially frozen brine and a three-phase extension of the Biot model for partially frozen unconsolidated sand. For partially frozen brine, our rock-physics study indicated that squirt flow caused by unfrozen brine inclusions in porous ice could be responsible for high P-wave attenuation around the freezing point. Decreasing P-wave attenuation below the freezing point can be explained by the gradual decrease of squirt flow due to the gradual depletion of unfrozen brine. For partially frozen unconsolidated sand, our rock-physics study implied that squirt flow between ice grains is a dominant factor for P-wave attenuation around the freezing point. With decreasing temperature lower than the freezing point, the friction between ice and sand grains becomes more dominant for P-wave attenuation because the decreasing amount of unfrozen brine reduces squirt flow between ice grains, whereas the generation of ice increases the friction. The increasing friction between ice and sand grains caused by ice formation is possibly responsible for increasing the S-wave attenuation at decreasing temperatures. Then, further generation of ice with further cooling reduces the elastic contrast between ice and sand grains, hindering their relative motion; thus, reducing the P- and S-wave attenuation.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Xinhua Sun ◽  
Xiaoming Tang ◽  
C. H. (Arthur) Cheng ◽  
L. Neil Frazer

In this paper, a modification of an existing method for estimating relative P-wave attenuation is proposed. By generating synthetic waveforms without attenuation, the variation of geometrical spreading related to changes in formation properties with depth can be accounted for. With the modified method, reliable P- and S-wave attenuation logs can be extracted from monopole array acoustic waveform log data. Synthetic tests show that the P- and S-wave attenuation values estimated from synthetic waveforms agree well with their respective model values. In‐situ P- and S-wave attenuation profiles provide valuable information about reservoir rock properties. Field data processing results show that this method gives robust estimates of intrinsic attenuation. The attenuation profiles calculated independently from each waveform of an eight‐receiver array are consistent with one another. In fast formations where S-wave velocity exceeds the borehole fluid velocity, both P-wave attenuation ([Formula: see text]) and S-wave attenuation ([Formula: see text]) profiles can be obtained. P- and S-wave attenuation profiles and their comparisons are presented for three reservoirs. Their correlations with formation lithology, permeability, and fractures are also presented.


Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. T155-T164
Author(s):  
Wanting Hou ◽  
Li-Yun Fu ◽  
José M. Carcione ◽  
Zhiwei Wang ◽  
Jia Wei

Thermoelasticity is important in seismic propagation due to the effects related to wave attenuation and velocity dispersion. We have applied a novel finite-difference (FD) solver of the Lord-Shulman thermoelasticity equations to compute synthetic seismograms that include the effects of the thermal properties (expansion coefficient, thermal conductivity, and specific heat) compared with the classic forward-modeling codes. We use a time splitting method because the presence of a slow quasistatic mode (the thermal mode) makes the differential equations stiff and unstable for explicit time-stepping methods. The spatial derivatives are computed with a rotated staggered-grid FD method, and an unsplit convolutional perfectly matched layer is used to absorb the waves at the boundaries, with an optimal performance at the grazing incidence. The stability condition of the modeling algorithm is examined. The numerical experiments illustrate the effects of the thermoelasticity properties on the attenuation of the fast P-wave (or E-wave) and the slow thermal P-wave (or T-wave). These propagation modes have characteristics similar to the fast and slow P-waves of poroelasticity, respectively. The thermal expansion coefficient has a significant effect on the velocity dispersion and attenuation of the elastic waves, and the thermal conductivity affects the relaxation time of the thermal diffusion process, with the T mode becoming wave-like at high thermal conductivities and high frequencies.


Author(s):  
Xiaohui He ◽  
Hao Liang ◽  
Peizhen Zhang ◽  
Yue Wang

Abstract The South China block has been one of the most seismically quiescent regions in China, and the geometries and activities of the Quaternary faults have remained less studied due to the limited outcrops. Thus, source parameters of small-to-moderate earthquakes are important to help reveal the location, geometry distribution, and mechanical properties of the subsurface faults and thus improve the seismic risk assessment. On 12 October 2019, two earthquakes (the Ms 4.2 foreshock and the Ms 5.2 mainshock) occurred within 2 s and are located in southern South China block, near the junction region of the large-scale northeast-trending fault zones and the less continuous northwest-trending fault zones. We determined the point-source parameters of the two events via P-wave polarity analysis and regional waveform modeling, and the resolved focal mechanisms are significantly different with the minimum 3D rotation angle of 52°. We then resolved the rupture directivity of the two events by analyzing the azimuth variation of the source time duration and found the Ms 4.2 foreshock ruptured toward north-northwest for ∼1.0 km, and the Ms 5.2 mainshock ruptured toward east-southeast (ESE) for ∼1.5 km, implying conjugate strike-slip faulting. The conjugate causative faults have not been mapped on the regional geological map, and we infer that the two faults may be associated with the northwest-trending Bama-Bobai fault zone (the Shiwo section). These active faults are optimally oriented in the present-day stress field (northwest-southeast) and thus may now be potentially accumulating elastic strain to be released in a future large earthquake.


2018 ◽  
Author(s):  
Marius Kriegerowski ◽  
Simone Cesca ◽  
Matthias Ohrnberger ◽  
Torsten Dahm ◽  
Frank Krüger

Abstract. We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q−1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wavefield seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms, but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to North-West Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp 


2016 ◽  
Vol 13 (4) ◽  
pp. 649-657 ◽  
Author(s):  
Yi-Yuan He ◽  
Tian-Yue Hu ◽  
Chuan He ◽  
Yu-Yang Tan

2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


2018 ◽  
Vol 40 (1) ◽  
pp. 439 ◽  
Author(s):  
Th. Rondoyanni ◽  
D. Galanakis ◽  
Ch. Georgiou ◽  
I. Baskoutas

Geological mapping on a 1:5.000 scale and a tectonic analysis in the wider Chalkida region of the Island of Evia and the adjacent Drossia area of Central Greece, have allowed the identification of a number of active and potentially active normal faults. These faults have been formed or reactivated during the Late Quaternary, since they affect Pleistocene brackish and terrestrial deposits. Some of the faults affect the contact of the limestone bedrock with the Quaternary formations, presenting characteristic polished surfaces. The faults, in places covered by the alluvial deposits of the Chalkida plain, are also detected by geophysical research. Among the identified faults, the most important are considered the Aghios Minas- Chalkida, the Avlida and the Lefkadi active faults. The first one extends from Drossia to the Chalkida area, crossing the sea straights, and has an ENE-WSW direction and a south dip. The other two, are parallel antithetic faults oriented WNW-ESE, and bound the South Evoikos Gulf on the Greek mainland and the Evia Island respectively. The mapping and evaluation of active faults in this region of moderate seismicity, with low topographic relief and consequent absence of morphotectonic features, is especially important from a seismic hazard point of view.


Sign in / Sign up

Export Citation Format

Share Document