scholarly journals Common aberrations from the normal human plasma N-glycan profile

Glycobiology ◽  
2010 ◽  
Vol 20 (8) ◽  
pp. 970-975 ◽  
Author(s):  
Maja Pučić ◽  
Sofia Pinto ◽  
Mislav Novokmet ◽  
Ana Knežević ◽  
Olga Gornik ◽  
...  
1975 ◽  
Vol 33 (03) ◽  
pp. 547-552 ◽  
Author(s):  
L Meunier ◽  
J. P Allain ◽  
D Frommel

SummaryA mixture of adsorbed normal human plasma and chicken plasma was prepared as reagent for factor IX measurement using a one-stage method. The substrate was found to be specific for factor IX. Its performances tested on samples displaying factor IX activity ranging from <l%–2,500% compared favorably with those obtained when using the plasma of severe haemophilia B patients as substrate.


1975 ◽  
Vol 33 (03) ◽  
pp. 540-546 ◽  
Author(s):  
Robert F Baugh ◽  
James E Brown ◽  
Cecil Hougie

SummaryNormal human plasma contains a component or components which interfere with ristocetin-induced platelet aggregation. Preliminary examination suggests a protein (or proteins) which binds ristocetin and competes more effectively for ristocetin than do the proteins involved in ristocetin-induced platelet aggregation. The presence of this protein in normal human plasma also prevents ristocetin-induced precipitation of plasma proteins at levels of ristocetin necessary to produce platelet aggregation (0.5–2.0 mg/ml). Serum contains an apparent two-fold increase of this component when compared with plasma. Heating serum at 56° for one hour results in an additional 2 to 4 fold increase. The presence of a ristocetin-binding protein in normal human plasma requires that this protein be saturated with ristocetin before ristocetin-induced platelet aggregation will occur. Variations in the ristocetin-binding protein(s) will cause apparent discrepancies in ristocetin-induced platelet aggregation in normal human plasmas.


1992 ◽  
Vol 67 (04) ◽  
pp. 440-444 ◽  
Author(s):  
Hiroko Tsuda ◽  
Toshiyuki Miyata ◽  
Sadaaki Iwanaga ◽  
Tetsuro Yamamoto

SummaryThe analysis of normal human plasma by fibrin autography revealed four species of plasminogen activator (PA) activity related to tissue-type PA, factor XII, prekallikrein and urokinase-type PA (u-PA). The u-PA activity increased significantly by incubating plasma with dextran sulfate. This increase was coincident with both the cleavage of factor XII and the complex formation of activated factor XII with its plasma inhibitors, which were determined by immunoblotting procedure. The dextran sulfate-dependent activation of u-PA required both factor XII and prekallikrein, but did not require either plasminogen or factor XI. High molecular weight kininogen was required only at a low concentration of dextran sulfate. Thus the results indicate that the factor XII and prekallikrein-mediated activation of single chain u-PA (scu-PA) operates as a major pathway of scu-PA activation in whole plasma in contact with dextran sulfate.


1992 ◽  
Vol 67 (01) ◽  
pp. 060-062 ◽  
Author(s):  
J Harsfalvi ◽  
E Tarcsa ◽  
M Udvardy ◽  
G Zajka ◽  
T Szarvas ◽  
...  

Summaryɛ(γ-glutamyl)lysine isodipeptide has been detected in normal human plasma by a sensitive HPLC technique in a concentration of 1.9-3.6 μmol/1. Incubation of in vitro clotted plasma at 37° C for 12 h resulted in an increased amount of isodipeptide, and there was no further significant change when streptokinase was also present. Increased in vivo isodipeptide concentrations were also observed in hypercoagulable states and during fibrinolytic therapy.


1963 ◽  
Vol 09 (01) ◽  
pp. 030-052 ◽  
Author(s):  
Eberhard Mammen

SummaryIn this paper an inhibitor is described that is found in hemophilic plasma and serum different from any till now described inhibitor. The inhibitor only inhibits prothrombin activation in the “intrinsic clotting systems”. This inhibitor is probably not present in normal human plasma or serum. It is destroyed by ether and freeze drying, is labile to acid and storage at room temperature. It is stable upon dialysis and has not been adsorbed on barium sulfate, aluminum hydroxide or kaolin. It precipitates at 50% v/v saturation with alcohol. The nature of this inhibitor seems to be a protein or lipoprotein.Factor VIII was isolated from hemophilic plasma. The amount isolated was the same as from normal plasma and the activity properties were not different. Hemophiliacs have normal amounts of factor VIII.


1979 ◽  
Author(s):  
P Friberger ◽  
C Lenne

A recently published method for Factor X (FX) assay (1) utilizing Russel's Viper Venom (RVV) and a chromogenic substrate has been further investigated by testing a large number of parameters. This method has been considered as a suitable method for monitoring coumarol treatment (Bergström et al).The conditions for the activation of FX by purified preparations of the RVV have been studied as well as the conditions for FXa determination with a new chromogenic substrate Bz-Ile-Glu(γ-piperidyl)-Gly-Arg-pNA (S-2337). Both purified factors and normal plasma have been used. The effect of plasma inhibitors as well as the selectivity of the method has been studied.The reproducibility and stability of the different reagents and standards have been studied and found to be good.The amount of FXa activity obtained from normal human plasma has been titrated with FXa inhibitors of known purity.1) Aurell L. et al, Thromb. Res., 11, 595 (1977)2) Bergström et al, Thromb. Res., 12, 531 (1978)


1979 ◽  
Author(s):  
E. T. Yin ◽  
W. J. Salsgiver ◽  
O. Tangen

Circumstantial evidence suggested that normal human plasma contained a substance regulating the neutralization of F.Xa by F.Xa inhibitor(XaI), (Yin et.al.,Adv.Exper. Med. & Biol., 52 : 239, 1975, Plenum Press, N.Y.).This plasma component has now been isolated and partially purified in our laboratory, and tentatively designated as “Anti-XaI”.In experiments employing purified components, when Anti-XaI was incubated at 37°C with F.Xa, Xal and heparin for two minutes at pH7.5, the amount of F.Xa inhibited was inversely proportional to the Anti-XaI concentration. But, when the F.Xa was replaced by thrombin in the incubation mixture, the neutralization of thrombin clotting activity was undisturbed.Anti-XaI was found to be neither PF3 nor PF4.These and other data strongly suggest that the “Antithrombin III pathway” is more complex than currently believed to be. In circulating blood an equilibrium state must exist between Anti-XaI and XaI.Under certain conditions when the Anti-XaI activity is predominant the rate of F.Xa neutralization bv XaI then becomes slower than the activation of prothrombin to thrombin by F.Xa.


Sign in / Sign up

Export Citation Format

Share Document