Prioritization and functional analysis of GWAS risk loci for Barrett’s esophagus and esophageal adenocarcinoma

2021 ◽  
Author(s):  
Jianhong Chen ◽  
Mourad Wagdy Ali ◽  
Li Yan ◽  
Shruti G Dighe ◽  
James Y Dai ◽  
...  

Abstract Genome-wide association studies (GWAS) have identified ~ 20 genetic susceptibility loci for esophageal adenocarcinoma (EAC), and its precursor, Barrett’s esophagus (BE). Despite such advances, functional/causal variants and gene targets at these loci remain undefined, hindering clinical translation. A key challenge is that most causal variants map to non-coding regulatory regions such as enhancers, and typically, numerous potential candidate variants at GWAS loci require testing. We developed a systematic informatics pipeline for prioritizing candidate functional variants via integrative functional potential scores consolidated from multi-omics annotations, and used this pipeline to identify two high-scoring variants for experimental interrogation: chr9q22.32/rs11789015 and chr19p13.11/rs10423674. Minimal candidate enhancer regions spanning these variants were evaluated using luciferase reporter assays in two EAC cell lines. One of the two variants tested (rs10423674) exhibited allele-specific enhancer activity. CRISPR-mediated deletion of the putative enhancer region in EAC cell lines correlated with reduced expression of two genes—CREB-regulated transcription coactivator 1 (CRTC1) and Cartilage oligomeric matrix protein (COMP); expression of five other genes remained unchanged (CRLF1, KLHL26, TMEM59L, UBA52, RFXANK). Expression quantitative trait locus (eQTL) mapping indicated that rs10423674 genotype correlated with CRTC1 and COMP expression in normal esophagus. This study represents the first experimental effort to bridge GWAS associations to biology in BE/EAC, and supports the utility of functional potential scores to guide variant prioritization. Our findings reveal a functional variant and candidate risk enhancer at chr19p13.11, and implicate CRTC1 and COMP as putative gene targets, suggesting that altered expression of these genes may underlie the BE/EAC risk association.

2021 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Manuel Pera ◽  
Marta Garrido ◽  
Gabriel Gil ◽  
Matteo Fassan ◽  
Marta Climent ◽  
...  

Abstract   Cardiac-type epithelium has been proposed as an intermediate stage between normal squamous epithelium and intestinal metaplasia in the development of Barrett’s esophagus. Deregulation of certain miRNAs and their effects on CDX2 expression might contribute to the intestinalization process of cardiac-type epithelium. The aim of this study was to identify miRNAs differentially expressed between CDX2 positive and negative glands of Barrett’s esophagus and to examine the function of specific miRNAs on the regulation of CDX2. Methods miRNA expression profiling using OpenArrayTM analysis in microdissected cardiac-type glands with and without fully CDX2 expression was performed in biopsies from patients who developed cardiac-type epithelium in the remnant esophagus after esophagectomy. Data were validated using real-time PCR in esophageal adenocarcinoma cell lines and in situ and real-time PCR miRNA/CDX2/MUC2 co-expression analysis in cardiac-type mucosa samples. The effect of miR-24-3p precursor transfection on CDX2 expression was assessed in the esophageal adenocarcinoma cell lines FLO-1 and KYAE-1. Results CDX2 positive glands were characterized by an unique miRNA profile with a significant downregulation of miR-24-3p, miR-520e-3p, miR-548a-1, miR-597-5p, miR-133a-3p, miR-30a-5p, miR-638, miR-625-3p, miR-1255b-1, miR-1260a and upregulation of miR-590 (Figure 1A). miRNA-24-3p was identified as potential regulator of CDX2 gene expression in three bioinformatics algorithms, and this was confirmed in esophageal adenocarcinoma cell lines (Figure 1C). Furthermore, miR-24-3p expression negatively correlates with CDX2 in cardiac-type mucosa samples with different stages of mucosal intestinalization (Figure 1B). Conclusion These results imply that miRNA-24-3p directly targets CDX2, and downregulation of miRNA-24-3p is associated with the acquisition of an intestinal phenotype in cardiac-type epithelium.


Author(s):  
Gabriel Gil-Gómez ◽  
Matteo Fassan ◽  
Lara Nonell ◽  
Marta Garrido ◽  
Marta Climent ◽  
...  

Summary Background Cardiac-type epithelium has been proposed as the precursor of intestinal metaplasia in the development of Barrett’s esophagus. Dysregulation of microRNAs (miRNAs) and their effects on CDX2 expression may contribute to intestinalization of cardiac-type epithelium. The aim of this study was to examine the possible effect of specific miRNAs on the regulation of CDX2 in a human model of Barrett’s esophagus. Methods Microdissection of cardiac-type glands was performed in biopsy samples from patients who underwent esophagectomy and developed cardiac-type epithelium in the remnant esophagus. OpenArray™ analysis was used to compare the miRNAs profiling of cardiac-type glands with negative or fully positive CDX2 expression. CDX2 was validated as a miR-24 messenger RNA target by the study of CDX2 expression upon transfection of miRNA mimics and inhibitors in esophageal adenocarcinoma cell lines. The CDX2/miR-24 regulation was finally validated by in situ miRNA/CDX2/MUC2 co-expression analysis in cardiac-type mucosa samples of Barrett’s esophagus. Results CDX2 positive glands were characterized by a unique miRNA profile with a significant downregulation of miR-24-3p, miR-30a-5p, miR-133a-3p, miR-520e-3p, miR-548a-1, miR-597-5p, miR-625-3p, miR-638, miR-1255b-1, and miR-1260a, as well as upregulation of miR-590-5p. miRNA-24-3p was identified as potential regulator of CDX2 gene expression in three databases and confirmed in esophageal adenocarcinoma cell lines. Furthermore, miR-24-3p expression showed a negative correlation with the expression of CDX2 in cardiac-type mucosa samples with different stages of mucosal intestinalization. Conclusion These results showed that miRNA-24-3p regulates CDX2 expression, and the downregulation of miRNA-24-3p was associated with the acquisition of the intestinal phenotype in esophageal cardiac-type epithelium.


2020 ◽  
Author(s):  
Shruti G Dighe ◽  
Jianhong Chen ◽  
Li Yan ◽  
Qianchuan He ◽  
Puya Gharahkhani ◽  
...  

Abstract Genome-wide association studies (GWAS) of esophageal adenocarcinoma (EAC) and its precursor, Barrett’s esophagus (BE), have uncovered significant genetic components of risk, but most heritability remains unexplained. Targeted assessment of genetic variation in biologically relevant pathways using novel analytical approaches may identify missed susceptibility signals. Central obesity, a key BE/EAC risk factor, is linked to systemic inflammation, altered hormonal signaling, and insulin-like growth factor (IGF) axis dysfunction. Here, we assessed IGF-related genetic variation and risk of BE and EAC. Principal components analysis (PCA) was employed to evaluate pathway-level and gene-level associations with BE/EAC, using genotypes for 270 SNPs in or near 12 IGF-related genes, ascertained from 3295 BE cases, 2515 EAC cases, and 3207 controls in the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON) GWAS. Gene-level signals were assessed using Multi-marker Analysis of GenoMic Annotation (MAGMA) and SNP summary statistics from BEACON and an expanded GWAS meta-analysis (6167 BE cases, 4112 EAC cases, 17,159 controls). Global variation in the IGF pathway was associated with risk of BE (P=0.0015). Gene-level associations with BE were observed for GHR (growth hormone receptor; p=0.00046, FDR q=0.0056) and IGF1R (IGF1 receptor; p=0.0090, q=0.0542). These gene-level signals remained significant at q<0.1 when assessed using data from the largest available BE/EAC GWAS meta-analysis. No significant associations were observed for EAC. This study represents the most comprehensive evaluation to date of inherited genetic variation in the IGF pathway and BE/EAC risk, providing novel evidence that variation in two genes encoding cell-surface receptors, GHR and IGF1R, may influence risk of BE.


2019 ◽  
Vol 32 (8) ◽  
Author(s):  
Zachary M Callahan ◽  
Zhuqing Shi ◽  
Bailey Su ◽  
Jianfeng Xu ◽  
Michael Ujiki

SUMMARY Surveillance of Barrett's esophagus (BE) is a clinical challenge; metaplasia of the distal esophagus increases a patient's risk of esophageal adenocarcinoma (EAC) significantly but the actual percentage of patients who progress is low. The current screening recommendations require frequent endoscopy and biopsy, which has inherent risk, high cost, and operator variation. Identifying BE patients genetically who are at high risk of progressing could deemphasize the role of endoscopic screening and create an opportunity for early therapeutic intervention. Genetic alterations in germline DNA have been identified in other disease processes and allow for early intervention or surveillance well before disease develops. The genetic component of BE remains mostly unknown and only a few genome-wide association studies exist on this topic. This review summarizes the current literature available that examines genetic alterations in BE and EAC with a particular emphasis on clinical implications.


Sign in / Sign up

Export Citation Format

Share Document