Osteoprotegerin interacts with syndecan-1 to promote human endometrial stromal decidualization by decreasing Akt phosphorylation

2020 ◽  
Vol 35 (11) ◽  
pp. 2439-2453
Author(s):  
Yufei Jiang ◽  
Jianing Li ◽  
Gaizhen Li ◽  
Songting Liu ◽  
Xinjie Lin ◽  
...  

Abstract STUDY QUESTION Does osteoprotegerin (OPG) promote human endometrial stromal decidualization? SUMMARY ANSWER OPG is essential for human endometrial stromal decidualization through its interaction with syndecan-1 to decrease Akt phosphorylation. WHAT IS KNOWN ALREADY OPG (a cytokine receptor) levels are significantly increased in the circulation of pregnant women. However, the role and mechanism of OPG in human endometrial stromal cell (ESC) decidualization remain elusive. STUDY DESIGN, SIZE, DURATION We analyzed the endometrial expression of OPG in endometrial tissue samples collected from women with regular menstrual cycles (ranging from 25 to 35 days), and decidual tissue samples collected from woman with normal early pregnancy or recurrent pregnancy loss (RPL) who visited the Department of Gynecology and Obstetrics at a tertiary care center from January to October 2018. None of the subjects had hormonal treatment for at least 3 months prior to the procedure. In total, 16 women with normal early pregnancy and 15 with RPL were selected as subjects for this study. The function of OPG in decidualization was explored in a human endometrial stromal cell (HESC) line and primary cultures of HESCs. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected endometrial tissues (by biopsy) from the subjects during their menstrual cycle and decidual tissues from subjects with a normal early pregnancy and those with RPL at the time of dilation and curettage. The control group comprised randomly selected women who underwent termination of an apparently normal early pregnancy. The endometrial OPG expression was analyzed using immunohistochemical staining and quantitative RT–PCR (qRT–PCR). Immunofluorescence staining and western blot, and qRT–PCR were used to explore the mRNA and protein expression, respectively, of OPG in an immortalized HESC line and in primary cultures of HESC during proliferation and decidualization. siRNA-mediated knockdown experiments were performed to examine the function of OPG in HESC proliferation and decidualization. Flow cytometry and the cell proliferation MTS assay were performed to further examine the role of OPG in HESC proliferation. We also analyzed decidual marker gene expression by qRT–PCR to assess the consequences of OPG loss for HESC decidualization. A co-immunoprecipitation (IP) assay was used to determine the potential interaction between the OPG and Syndecan-1. Western blot analysis of the rescue experiments performed using the phosphatidylinositol 3-kinase (PI3K) signaling-specific inhibitor LY294002 was used to investigate the downstream signaling pathways through which OPG could mediate HESC decidualization. MAIN RESULTS AND THE ROLE OF CHANCE OPG was expressed in both the human endometrium and in vitro decidualized ESCs. Knockdown experiments revealed that OPG loss impaired the expression of IGF-binding protein-1 (IGFBP-1) (P < 0.05) and prolactin (PRL) (P < 0.05), two specific markers of decidualization, in HESC undergoing decidualization. We also uncovered that OPG knockdown induced the aberrant activation of Akt (protein kinase B) during HESC decidualization (P < 0.05). The inhibition of Akt activation could rescue the impaired expression of the decidual markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) in response to OPG knockdown. Syndecan-1 was considered a potential receptor candidate, as it was expressed in both the endometrium and in vitro cultured stromal cells. Subsequent co-IP experiments demonstrated the interaction between OPG and Syndecan-1 during decidualization. In addition, Syndecan-1 knockdown not only clearly attenuated the decidualization markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) but also induced the aberrant enhancement of Akt phosphorylation in decidualized cells, consistent with the phenotype of OPG knockdown cells. Finally, we revealed that the transcript and protein expression of both OPG and Syndecan-1 was significantly lower in the decidual samples of women with RPL than in those of women with normal pregnancy (P < 0.05). LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION In this study, based on a number of approaches, it was demonstrated that OPG mediated the repression of Akt that occurs during human stromal cell decidualization, however, the molecular link between OPG and Akt signaling was not determined, and still requires further exploration. WIDER IMPLICATIONS OF THE FINDINGS OPG is required for decidualization, and a decrease in OPG levels is associated with RPL. These findings provide a new candidate molecule for the diagnosis and potential treatment of RPL. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by the National Natural Science Foundation of China U1605223 (to G.S.), 81701457 (to Y.J.) and 81601349 (to Y.J.). The authors have no conflicts of interest to disclose.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


1997 ◽  
Vol 25 (2) ◽  
pp. 153-160
Author(s):  
Francesca Mattioli ◽  
Marianna Angiola ◽  
Laura Fazzuoli ◽  
Francesco Razzetta ◽  
Antonietta Martelli

Although primary cultures of human thyroid cells are used for endocrinological and toxicological studies, until now no attention has been paid toward verifying whether the hormonal conditions to which the gland was exposed in vivo prior to surgery could influence in vitro responses. Our findings suggest that the hormonal situation in vivo cannot be used as a predictive indicator of triiodothyronine and thyroxine release and/or S-phase frequency in vitro, either with or without the addition of bovine thyrotropin.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


2002 ◽  
Vol 266 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Seung Yup Ku ◽  
Y. M. Choi ◽  
Chang Suk Suh ◽  
Seok Hyun Kim ◽  
Jung Gu Kim ◽  
...  

2021 ◽  
Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Abstract Background: LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function.Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell proliferation, invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.


Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Background: LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function. Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13045-e13045
Author(s):  
Chang Gong ◽  
Qun Lin ◽  
Xiaolin Fang ◽  
Wenguo Jiang ◽  
Jun Li ◽  
...  

e13045 Background: Compared to lumial breast cancer, the proporation of triple-negative breast cancer (TNBC) with bone metastases (BMs) is relatively low and few data focusing on the mechanism of the BMs in TNBC are available, Here, we screened that CTNND1 was associated with BMs of TNBC by integrating high-throughput sequencing, and further investigated the role of CTNND1 in BMs of TNBC in vitro. Methods: TNBC tissue samples with only BMs (n = 6) and without any metastasis (n = 10) were tested using high-throughput sequencing and 11 differentially expressed relative genes were identified. We then quantified these 11 genes in normal breast tissue samples (n = 26), TNBC tissue samples with only BMs (n = 10), TNBC tissue samples without any metastasis (n = 88) as well as luminal tissue samples with BMs(n = 10)through qPCR and immunohistochemical staining (IHC). The effects of knocking down CTNND1 on the interaction between TNBC cells and osteoblasts were examined by cell adhesion, transwell migration and matrigel invasion assays. To explorethe role of CTNND1 in mediating bone metastasis in TNBC, we used RNA-sequencing to find out the relative downstream gene CXCR4 and PI3K-AKT-mTOR pathway and verified it in vitro by Western Blotting. Results: Combining our high-throughput sequencing data, qPCR and IHC in clinical tissue samples, we verified that CTNND1 was decreased in TNBC patients with bone metastasis compared to normal tissue and luminal tissue with BMs. Knocking down of CTNND1 in TNBC cells including MDA-MB-231, MDA-MB-468 and BT549 weakened cells adhesion, but facilitated cells migration and invasion. Mechanically, knocking down of CTNND1 upregulated CXCR4 via activating PI3K-AKT-mTOR pathway in TNBC but not luminal and HER2- positive breast cancer cells lines. Conclusions: CTNND1 mediates bone metastasis in triple-negative breast cancer via regulating CXCR4.CTNND1 may serve as a potential predictor of bone metastasis for TNBC patients.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2436-2443 ◽  
Author(s):  
MC Yoder ◽  
VE Papaioannou ◽  
PP Breitfeld ◽  
DA Williams

Abstract The mechanisms involved in the induction of yolk sac mesoderm into blood islands and the role of visceral endoderm and mesoderm cells in regulating the restricted differentiation and proliferation of hematopoietic cells in the yolk sac remain largely unexplored. To better define the role of murine yolk sac microenvironment cells in supporting hematopoiesis, we established cell lines from day-9.5 gestation murine yolk sac visceral endoderm and mesoderm layers using a recombinant retrovirus vector containing Simian virus 40 large T- antigen cDNA. Obtained immortalized cell lines expressed morphologic and biosynthetic features characteristic of endoderm and mesoderm cells from freshly isolated yolk sacs. Similar to the differentiation of blood island hematopoietic cells in situ, differentiation of hematopoietic progenitor cells in vitro into neutrophils was restricted and macrophage production increased when bone marrow (BM) progenitor cells were cultured in direct contact with immortalized yolk sac cell lines as compared with culture on adult BM stromal cell lines. Yolk sac- derived cell lines also significantly stimulated the proliferation of hematopoietic progenitor cells compared with the adult BM stromal cell lines. Thus, yolk sac endoderm- and mesoderm-derived cells, expressing many features of normal yolk sac cells, alter the growth and differentiation of hematopoietic progenitor cells. These cells will prove useful in examining the cellular interactions between yolk sac endoderm and mesoderm involved in early hematopoietic stem cell proliferation and differentiation.


2020 ◽  
Author(s):  
Montserrat Lara-Velazquez ◽  
Natanael Zarco ◽  
Anna Carrano ◽  
Jordan Phillipps ◽  
Emily S Norton ◽  
...  

Abstract Background Glioblastomas (GBMs) are the most common primary brains tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for reasons that remain unknown. One potential explanation is the proximity of these tumors to the cerebrospinal fluid (CSF) and its contained chemical cues that can regulate cellular migration and differentiation. We therefore investigated the role of CSF on GBM gene expression and the role of a CSF-induced gene, SERPINA3, in GBM malignancy in vitro and in vivo. Methods We utilized patient-derived CSF and primary cultures of GBM brain tumor initiating cells (BTICs). We determined the impact of SERPINA3 expression in glioma patients using TCGA database. SERPINA3 expression changes were evaluated at both the mRNA and protein levels. The effects of knockdown (KD) and overexpression (OE) of SERPINA3 on cell behavior were evaluated by transwell assay (for cell migration), and alamar blue and Ki67 (for viability and proliferation respectively). Stem cell characteristics on KD cells were evaluated by differentiation and colony formation experiments. Tumor growth was studied by intracranial and flank injections. Results GBM CSF induced a significant increase in BTIC migration accompanied by upregulation of the SERPINA3 gene. In patient samples and TCGA data we observed SERPINA3 to correlate directly with brain tumor grade and indirectly with GBM patient survival. Silencing of SERPINA3 induced a decrease in cell proliferation, migration, invasion, and stem cell characteristics, while SERPINA3 overexpression increased cell migration. In vivo, mice orthotopically-injected with SERPINA3 KD BTICs showed increased survival. Conclusions SERPINA3 plays a key role in GBM malignancy and its inhibition results in a better outcome using GBM preclinical models.


Sign in / Sign up

Export Citation Format

Share Document