scholarly journals Mechanism of LIN28B in Trophoblastic Villous Cells of Unexplained Recurrent Abortion

2021 ◽  
Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Abstract Background: LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function.Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell proliferation, invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.

Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Background: LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function. Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.


2020 ◽  
Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Abstract LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. Purpose: To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function. Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell proliferation, invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.


2020 ◽  
Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Abstract Background: LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function.Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell proliferation, invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.


2019 ◽  
Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Abstract LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. Purpose: To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods: The LIN28B gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function. Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: The expression of LIN28B is decreased with URSA, inhibiting cell proliferation, invasion, and migration, and promoting apoptosis and fusion. Dystrophic dysfunction, then, may be one of the causes of miscarriage.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2020 ◽  
Author(s):  
Xiang Liao ◽  
Ru Fang ◽  
Ying Tian ◽  
Chen Chen ◽  
Zhijun Wu ◽  
...  

Abstract BackgroundEphA2 is upregulated in GBM tumor tissue specimens and established cancer cell lines and thought to be an attractive therapeutic target in cancer. We aim to define the role of EphA2 in polarization of microglia.MethodsQuantitative real-time polymerase chain reaction, immunofluorescence staining, and viral transfection-based knockdown and overexpression assays to assess the effect of EphA2 on microglia polarization. iTRAQ-LC-MS/MS and western blot were conducted to detect EphA2 and PI3K-Akt signaling activity. Using the Millicell system as an in vitro co-culture model, we performed transwell and western blot assays investigate the role of EphA2-mediated M1-like of microglia on GBM cells invasion and migration in vitro and in vivo. ResultsIn overexpressing and silencing experiments, we demonstrated that EphA2 contributed to the M1-like polarization of microglia. Mechanistically, PI3K-AKT signaling was the downstream of EphA2 and supported the process of EphA2 mediated the M1-like polarization of microglia. Finally, EphA2 mediated the M1-like polarization of microglia attenuated the migration and invasion ability of GBM cells in vitro and in vivo.ConclusionsOur study indicates that, distinct from its role on cancer cells, EphA2 promoted the M1-like polarization of microglia and further attenuated the metastasis of GBM.Our results provide a new information on rationale for targeting EphA2 to improve treatment outcomes in GBM patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chen Hang ◽  
Shanojie Zhao ◽  
Tiejun Wang ◽  
Yan Zhang

Abstract Background Breast cancer (BrCa) is the most common female malignancy worldwide and has the highest morbidity among all cancers in females. Unfortunately, the mechanisms of BrCa growth and metastasis, which lead to a poor prognosis in BrCa patients, have not been well characterized. Methods Immunohistochemistry (IHC) was performed on a BrCa tissue microarray (TMA) containing 80 samples to evaluate ubiquitin protein ligase E3C (UBE3C) expression. In addition, a series of cellular experiments were conducted to reveal the role of UBE3C in BrCa. Results In this research, we identified UBE3C as an oncogenic factor in BrCa growth and metastasis for the first time. UBE3C expression was upregulated in BrCa tissues compared with adjacent breast tissues. BrCa patients with high nuclear UBE3C expression in tumors showed remarkably worse overall survival (OS) than those with low nuclear expression. Knockdown of UBE3C expression in MCF-7 and MDA-MB-453 BrCa cells inhibited cell proliferation, migration and invasion in vitro, while overexpression of UBE3C in these cells exerted the opposite effects. Moreover, UBE3C promoted β-catenin nuclear accumulation, leading to the activation of the Wnt/β-catenin signaling pathway in BrCa cells. Conclusion Collectively, these results imply that UBE3C plays crucial roles in BrCa development and progression and that UBE3C may be a novel target for the prevention and treatment of BrCa.


2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


2017 ◽  
Vol 32 (4) ◽  
pp. 403-408 ◽  
Author(s):  
Hongfen Liu ◽  
Qiang Zhen ◽  
Yakun Fan

Background Recent studies have shown that long noncoding RNA (IncRNA) gastric carcinoma highly expressed transcript 1 (GHET1) was involved in the progression of tumors. However, the role of GHET1 in esophageal squamous cell carcinoma (ESCC) remains unclear. Methods The expression of IncRNA GHET1 was examined in 55 paired ESCC tissues and adjacent nontumor tissues. Molecular and cellular techniques were used to explore the role of GHET1 on ESCC cells. Results Our data showed that GHET1 expression was significantly increased in ESCC tissues and cell lines. High GHET1 expression in ESCC tissues was significantly associated with poor differentiation, advanced tumor nodes metastasis stage, and lymph node metastasis. GHET1 showed high sensitivity and specificity for diagnosing ESCC. Our data from in vitro assays showed that GHET1 inhibition suppressed ESCC cells proliferation, migration, and invasion, and induced cells apoptosis. Furthermore, western blot showed that GHET1 inhibition significantly decreased the expression of vimentin and N-cadherin while it increased the expression of E-cadherin. Conclusions Our study indicates that GHET1 acts as an oncogene in ESCC and may represent a novel therapeutic target for the treatment of ESCC patients.


2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document