P–632 Examination of temporal changes in phenotype and gut microbiome during the process of growth in polycystic ovary syndrome (PCOS) model induced by prenatal androgen exposure

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Kusamoto ◽  
M Harada ◽  
J M Azhary ◽  
C Kunitomi ◽  
E Nose ◽  
...  

Abstract Study question From when do abnormality in gut microbiome and phenotypes of PCOS appear during the process of growth? Summary answer Reproductive phenotypes of PCOS appear from 6 weeks and metabolic phenotypes from 12 weeks onward. Alteration in gut microbiome appears as early as 4 weeks. What is known already The etiology of PCOS remains largely unknown, however PCOS is considered as a complex multigenic disorder with strong epigenetic and environmental influence. Previous studies have suggested that fetal over-exposure to androgens could be the main factor of the development of PCOS after birth. On the other hands, recent studies on both human and PCOS rodent models have demonstrated the association between PCOS and alteration of gut microbiome in adulthood. Furthermore, it was recently reported that gut microbiome in obese adolescent with PCOS is different from obese adolescent without PCOS. Study design, size, duration A rodent PCOS model induced by prenatal dehydroepiandrosterone (DHT) exposure was applied to this study. Phenotypes and gut microbiome were compared between PCOS model mice (n = 12/group) and control mice (n = 10/group) at each stage of growth; 4 weeks (prepuberty), 6 weeks (puberty), 8 weeks (adolescent), 12 weeks (young adult), and 16 weeks (adult). The determinants for PCOS phenotypes are onset of puberty, estrous cycle, morphology of ovaries, serum testosterone level, body weight, and insulin resistance. Participants/materials, setting, methods Pregnant dams were subcutaneously injected on days of 16, 17, and 18 of gestation with either sesame oil for control groups or sesame oil containing 250µg of DHT for prenatal DHT groups. The evaluation of PCOS phenotypes and gut microbiome in female offspring were performed at each stage of growth. For examination of gut microbiota, next generation sequencing and bioinformatics analysis of 16S rRNA genes were performed on DNA extracted from mouse fecal samples. Main results and the role of chance Prenatal DHT mice exhibited delayed puberty onset, disrupted estrous cycle, and significantly increased testosterone levels from 6 weeks onward. Significantly increased atretic antral follicles were observed in prenatal DHT mice at 6, 12, and 16 weeks. Prenatal DHT mice showed significantly decreased body weight at 4, 6, 8 weeks and increased body weight from 12 weeks onward. As for gut microbiome, alpha-diversity was significantly different between control and prenatal DHT mice from 8 weeks onward and beta-diversity was significantly different at 6 and 8 weeks. Altered composition of gut microbiota was observed as early as 4 weeks. At phylum level, Firmicutes are significantly increased in prenatal DHT mice at 4 and 8 weeks and decreased at 16 weeks. Actinobacteria phylum showed significant decrease at 6 and 8 weeks in prenatal DHT mice. At genus level, relative abundance of several bacterial taxa significantly differed between control and prenatal DHT mice; some taxa, such as Allobaculum, Adlercreutzia, Bilophila, Clostridium, Gemella, Gemmiger, Roseburia, Ruminococcus, Staphylococcus, and Sutterella, exhibited constant increase or decrease in prenatal DHT mice during the process of growth. Interestingly, Roseburia was never detected in prenatal DHT mice, while approximately half of control mice harbored Roseburia at 12 and 16 weeks. Limitations, reasons for caution It is not clearly determined whether alteration in gut microbiome is cause or result of PCOS development, although the changes in gut microbiome seemed to precede the appearance of typical PCOS phenotypes in the present study. Mouse model does not completely recapitulate human PCOS. Wider implications of the findings: Our findings suggest that prenatal androgen exposure causes alteration of gut microbiome from pre-puberty onward, even before PCOS phenotypes become apparent. Intervention for girls at risk of PCOS with pre/pro-biotics may prevent them from developing PCOS in future. Trial registration number Not applicable

Gut Microbes ◽  
2018 ◽  
pp. 1-22 ◽  
Author(s):  
Shermel B. Sherman ◽  
Nadeen Sarsour ◽  
Marziyeh Salehi ◽  
Allen Schroering ◽  
Blair Mell ◽  
...  

2008 ◽  
Vol 295 (2) ◽  
pp. E262-E268 ◽  
Author(s):  
Marek Demissie ◽  
Milos Lazic ◽  
Eileen M. Foecking ◽  
Fraser Aird ◽  
Andrea Dunaif ◽  
...  

Androgen exposure during intrauterine life in nonhuman primates and in sheep results in a phenocopy of the reproductive and metabolic features of polycystic ovary syndrome (PCOS). Such exposure also results in reproductive features of PCOS in rodents. We investigated whether transient prenatal androgen treatment produced metabolic abnormalities in adult female rats and the mechanisms of these changes. Pregnant dams received free testosterone or vehicle injections during late gestation, and their female offspring were fed regular or high-fat diet (HFD). At 60 days of age, prenatally androgenized (PA) rats exhibited significantly increased body weight; parametrial and subcutaneous fat; serum insulin, cholesterol and triglyceride levels; and hepatic triglyceride content (all P < 0.0125). There were no significant differences in insulin sensitivity by intraperitoneal insulin tolerance test or insulin signaling in liver or skeletal muscle. HFD had similar effects to PA on body weight and composition as well as on circulating triglyceride levels. HFD further increased hepatic triglyceride content to a similar extent in both PA and control rats. In PA rats, HFD did not further increase circulating insulin, triglyceride, or cholesterol levels. In control rats, HFD increased insulin levels, but to a lesser extent than PA alone (∼2.5- vs. ∼12-fold, respectively). We conclude that transient prenatal androgen exposure produces features of the metabolic syndrome in adult female rats. Dyslipidemia and hepatic steatosis appear to be mediated by PA-induced increases in adiposity, whereas hyperinsulinemia appears to be a direct result of PA.


2021 ◽  
Author(s):  
Zheng Li ◽  
Meng-jiao Xu ◽  
Hong Xia ◽  
Huai-fang Li ◽  
Binggen Zhu

Abstract Background The distance between clitoris and urethral meatus (CUMD) for women has been considered to likely reflect the extent of prenatal androgen exposure, being similar to the anogenital distance (AGD) and the digit length ratio. But no published work has examined the association between the CUMD and the AGD or digit ratio and the effect of body weight on CUMD and AGD.Methods The CUMD and AGD (including AGD-AC, from the anus to the anterior clitoris; AGD-AF, from the anus to the posterior fourchette) measurements for 117 women (18-45 years) were taken using a digital caliper, and the digit ratios were measured from photos by a digital camera. Meanwhile, data of their height, weight, and body mass index (BMI) were collected at same time. Results In bivariate correlation analyses of all 117 subjects, two AGD measurements (AGD-AC and AGD-AF) were moderately correlated with one another (r=0.474, p<0.001), but the correlation between AGD-AC and CUMD was weak (r=0.172, p=0.063). Both AGD-AC and AGD-AF were notably correlated with weight (r=0.290, p=0.002 and r=0.189, p=0.041; respectively) and BMI (r=0.341, p<0.001 and r=0.204, p=0.027; respectively), whereas the CUMD was not affected by weight or BMI. Exclusion of obese individuals, the CUMD of 86 non-overweight subjects was obviously correlated with the AGD-AC (r=0.236, p=0.028). Conclusion These results indicated that the CUMD could be a marker of prenatal androgen exposure without influence of body weight, superior to AGD-AC or AGD-AF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luisa Ernsten ◽  
Lisa M. Körner ◽  
Martin Heil ◽  
Gareth Richards ◽  
Nora K. Schaal

AbstractHands and digits tend to be sexually dimorphic and may reflect prenatal androgen exposure. In the past years, the literature introduced several hand and digit measures, but there is a lack of studies in prepubertal cohorts. The available literature reports more heterogeneous findings in prepubertal compared to postpubertal cohorts. The comparability of the available studies is further limited by the study design and different measurement techniques. The present study compared the reliability and sex differences of available hand and digit measures, namely digit lengths of 2D, 3D, 4D, 5D, digit ratios 2D:4D, 2D:5D, 3D:4D, 3D:5D, 4D:5D, relative digit lengths rel2, rel3, rel4, rel5, directional asymmetry of right and left 2D:4D (Dr-l), hand width, length, and index of 399 male and 364 female 6-month-old German infants within one study using only indirect and computer-assisted measurements. The inter-examiner reliability was excellent while the test-retest reliability of hand scans was only moderate to high. Boys exhibited longer digits as well as wider and longer hands than girls, but smaller digit ratios, with ratios comprising the fifth digit revealing the largest effect sizes. Other hand and digit ratios revealed sex differences to some extent. The findings promote the assumption of sexual dimorphic hand and digit measures. However, by comparing the results of the available literature, there remains an uncertainty regarding the underlying hypothesis. Specifically in prepubertal cohorts, i.e. before the influence of fluctuating hormones, significant effects should be expected. It seems like other factors than the influence of prenatal androgens contribute to the sexual dimorphism in hand and digit lengths.


2022 ◽  
Vol 25 (8) ◽  
pp. 864-873
Author(s):  
A. Y. Tikunov ◽  
A. N. Shvalov ◽  
V. V. Morozov ◽  
I. V. Babkin ◽  
G. V. Seledtsova ◽  
...  

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.


2019 ◽  
Vol 7 (8) ◽  
pp. 86 ◽  
Author(s):  
Elisabet Stener-Victorin ◽  
Maria Manti ◽  
Romina Fornes ◽  
Sanjiv Risal ◽  
Haojiang Lu ◽  
...  

Women with polycystic ovary syndrome (PCOS) exhibit compromised psychiatric health. Independent of obesity, women with PCOS are more susceptible to have anxiety and depression diagnoses and other neuropsychiatric disorders. During pregnancy women with PCOS display high circulating androgen levels that may cause prenatal androgen exposure affecting the growing fetus and increasing the risk of mood disorders in offspring. Increasing evidence supports a non-genetic, maternal contribution to the development of PCOS and anxiety disorders in the next generation. Prenatal androgenized rodent models reflecting the anxiety-like phenotype of PCOS in the offspring, found evidence for the altered placenta and androgen receptor function in the amygdala, together with changes in the expression of genes associated with emotional regulation and steroid receptors in the amygdala and hippocampus. These findings defined a previously unknown mechanism that may be critical in understanding how maternal androgen excess can increase the risk of developing anxiety disorders in daughters and partly in sons of PCOS mothers. Maternal obesity is another common feature of PCOS causing an unfavorable intrauterine environment which may contribute to psychiatric problems in the offspring. Whether environmental factors such as prenatal androgen exposure and obesity increase the offspring’s susceptibility to develop psychiatric ill-health will be discussed.


Author(s):  
Ashlyn Swift-Gallant ◽  
S. Marc Breedlove

While prenatal sex hormones guide the development of sex-typical reproductive structures, they also act on the developing brain, resulting in sex differences in brain and behavior in animal models. Stemming from this literature is the prominent hypothesis that prenatal neuroendocrine factors underlie sex differences in human sexual orientation, to explain why most males have a preference for female sexual partners (gynephilia), whereas most females display a preference for male sexual partners (androphilia). Convergent evidence from experiments of nature and indirect markers of prenatal hormones strongly support a role for prenatal androgens in same-same sexual orientations in women, although this finding is specific to a subset of lesbians who are also gender nonconforming (“butch”). More gender-conforming lesbians (“femmes”) do not show evidence of increased prenatal androgens. The literature has been more mixed for male sexual orientation: some report evidence of low prenatal androgen exposure, while others report evidence of high androgen levels and many other studies find no support for a role of prenatal androgen exposure in the development of androphilia in males. Recent evidence suggests there may be subgroups of gay men who owe their sexual orientation to distinct biodevelopmental mechanisms, which could account for these mixed findings. Although this research is young, it is similar to findings from lesbian populations, because gay men who are more gender nonconforming, and report a preference for receptive anal sex, differ on markers of prenatal development from gay men who are more gender conforming and report a preference for insertive anal sex. This chapter concludes with future research avenues including assessing whether multiple biodevelopmental pathways underlie sexual orientation and whether neuroendocrine factors and other biological mechanisms (e.g., immunology, genetics) interact to promote a same-sex sexual orientation.


Sign in / Sign up

Export Citation Format

Share Document