scholarly journals Taxonomic composition and biodiversity of the gut microbiome from patients with irritable bowel syndrome, ulcerative colitis, and asthma

2022 ◽  
Vol 25 (8) ◽  
pp. 864-873
Author(s):  
A. Y. Tikunov ◽  
A. N. Shvalov ◽  
V. V. Morozov ◽  
I. V. Babkin ◽  
G. V. Seledtsova ◽  
...  

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.


2011 ◽  
Vol 10 (9) ◽  
pp. 4208-4218 ◽  
Author(s):  
Gwénaëlle Le Gall ◽  
Samah O. Noor ◽  
Karyn Ridgway ◽  
Louise Scovell ◽  
Crawford Jamieson ◽  
...  

2020 ◽  
Author(s):  
YeonGyun Jung ◽  
Dorsaf Kerfahi ◽  
Huy Quang Pham ◽  
HyunWoo Son ◽  
Jerald Conrad Ibal ◽  
...  

The gut microbiome is essential to human health. However, little is known about the influence of the environment versus host-related factors (e.g. genetic background, sex, age, and body mass) in the formation of human intestinal microflora. Here, we present evidence in support of the importance of host-related factors in the establishment and maintenance of individual gut assemblages. We collected fecal samples (n = 249) from 44 Korean naval trainees and 39 healthy people living in Korea over eight weeks and sequenced the bacterial 16S rRNA genes. The following hypotheses were tested: 1) microbiome function is linked to its diversity, community structure, and genetic host-related factors, and 2) preexisting host-related factors have a more significant effect on gut microbiome formation and composition than environmental factors. For each individual, the difference between the initial gut microbiota and that after eight weeks was negligible even though the 44 naval trainees lived in the same area and received the same diet, the same amount of exercise, and the same amount of physical stress during the study. This suggests that host-related factors, rather than environmental factors, is a key determinant of individual gut microflora. Moreover, eight weeks of physical training and experiencing the same environmental conditions resulted in an increase in the species Bifidobacterium, Faecalibacterium, and Roseburia in most trainees, suggesting a healthier intestinal environment.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Giada De Palma ◽  
Premysl Bercik

Irritable bowel syndrome is the most common functional gastrointestinal disorder, affecting up to 9% individuals globally. Although the etiology of this syndrome is likely heterogenous, it presents with its hallmark symptoms of abdominal pain and altered intestinal motility. Moreover, it is considered to be a disorder of the gut-brain interaction, and the microbiome has often been implicated as a central player in its pathophysiology. Patients with irritable bowel syndrome display altered composition and function of the gut microbiota compared to healthy controls. Microbiome directed therapies, such as probiotics, antibiotics and fecal microbiome transplantation, appear to be beneficial for both gut symptoms and psychiatric comorbidities. This review aims to recapitulate the available literature on the microbiome contribution to the pathophysiology and symptoms presentation of irritable bowel syndrome, as well as the current literature on microbiome-targeted treatments for this disease.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Julien Tap ◽  
Stine Störsrud ◽  
Boris Le Nevé ◽  
Aurélie Cotillard ◽  
Nicolas Pons ◽  
...  

Abstract Background While several studies have documented associations between dietary habits and microbiota composition and function in healthy individuals, no study explored these associations in patients with irritable bowel syndrome (IBS), and especially with symptoms. Methods Here, we used a novel approach that combined data from a 4-day food diary, integrated into a food tree, together with gut microbiota (shotgun metagenomic) for individuals with IBS (N = 149) and healthy controls (N = 52). Paired microbiota and food-based trees allowed us to detect new associations between subspecies and diet. Combining co-inertia analysis and linear regression models, exhaled gas levels and symptom severity could be predicted from metagenomic and dietary data. Results We showed that individuals with severe IBS are characterized by a higher intake of poorer-quality food items during their main meals. Our analysis suggested that covariations between gut microbiota at subspecies level and diet could be explained with IBS symptom severity, exhaled gas, glycan metabolism, and meat/plant ratio. We provided evidence that IBS severity is associated with altered gut microbiota hydrogen function in correlation with microbiota enzymes involved in animal carbohydrate metabolism. Conclusions Our study provides an unprecedented resolution of diet-microbiota-symptom interactions and ultimately guides new interventional studies that aim to identify gut microbiome-based nutritional recommendations for the management of gastrointestinal symptoms. Trial registration This trial was registered on the ClinicalTrials.gov, with the registration number NCT01252550, on 3rd December 2010.


2020 ◽  
Author(s):  
Sharon Erdrich ◽  
Jason A Hawrelak ◽  
Stephen P Myers ◽  
Joanna E Harnett

Abstract Background The association between fibromyalgia and irritable bowel syndrome is well-established. Alterations in the composition and diversity of the gut microbiome in irritable bowel syndrome have been reported, however, this association is poorly understood in fibromyalgia. Our aim was to summarise the research reporting on the gastrointestinal microbiome and its biomarkers in people with fibromyalgia.Methods A systematic review of published original research reporting on the gastrointestinal microbiota and its biomarkers in adults with a diagnosis of fibromyalgia was undertaken.Results From 4771 studies, 11 met our inclusion criteria and were separated into four main groups: papers reporting Helicobacter pylori ; other gut bacterial markers; metabolomics and other biomarkers, which included intestinal permeability and small intestinal bacterial overgrowth.Conclusion The results suggest there is a paucity of quality research in this area, with indications that the gut microbiota may play a role in fibromyalgia within the emerging field of the gut-musculoskeletal axis. Further investigations into the relationship between the gut microbiota, gut dysfunction and fibromyalgia are warranted.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nishal Kumar Pinna ◽  
Ranjit Mohan Anjana ◽  
Shruti Saxena ◽  
Anirban Dutta ◽  
Visvanathan Gnanaprakash ◽  
...  

Abstract Background Recent studies have indicated an association of gut microbiota and microbial metabolites with type 2 diabetes mellitus (T2D). However, large-scale investigation of the gut microbiota of “prediabetic” (PD) subjects has not been reported. Identifying robust gut microbiome signatures of prediabetes and characterizing early prediabetic stages is important for the understanding of disease development and could be crucial in early diagnosis and prevention. Methods The current study performed amplification and sequencing on the variable regions (V1–V5) of the 16S rRNA genes to profile and compare gut microbiota of prediabetic individuals (N = 262) with normoglycemic individuals (N = 275) from two cohorts in India and Denmark. Similarly, fasting serum inflammatory biomarkers were profiled from the study participants. Results After correcting for strong country-specific cohort effect, 16 operational taxonomic units (OTUs) including members from the genera Prevotella9, Phascolarctobacterium, Barnesiella, Flavonifractor, Tyzzerella_4, Bacteroides, Faecalibacterium, and Agathobacter were identified as enriched in normoglycaemic subjects with respect to the subjects with prediabetes using a negative binomial Wald test. We also identified 144 OTUs enriched in the prediabetic subjects, which included members from the genera Megasphaera, Streptococcus, Prevotella9, Alistipes, Mitsuokella, Escherichia/Shigella, Prevotella2, Vibrio, Lactobacillus, Alloprevotella, Rhodococcus, and Klebsiella. Comparative analyses of relative abundance of bacterial taxa revealed that the Streptococcus, Escherichia/Shigella, Prevotella2, Vibrio, and Alloprevotella OTUs exhibited more than fourfold enrichment in the gut microbiota of prediabetic subjects. When considering subjects from the two geographies separately, we were able to identify additional gut microbiome signatures of prediabetes. The study reports a probable association of Megasphaera OTU(s) with impaired glucose tolerance, which is significantly pronounced in Indian subjects. While the overall results confirm a state of proinflammation as early as in prediabetes, the Indian cohort exhibited a characteristic pattern of abundance of inflammatory markers indicating low-grade intestinal inflammation at an overall population level, irrespective of glycemic status. Conclusions The results present trans-ethnic gut microbiome and inflammation signatures associated with prediabetes, in Indian and Danish populations. The identified associations may be explored further as potential early indicators for individuals at risk of dysglycemia.


Sign in / Sign up

Export Citation Format

Share Document