scholarly journals A mouse model to investigate the impact of testosterone therapy on reproduction in transgender men

2019 ◽  
Vol 34 (10) ◽  
pp. 2009-2017 ◽  
Author(s):  
H M Kinnear ◽  
E S Constance ◽  
A David ◽  
E E Marsh ◽  
V Padmanabhan ◽  
...  

Abstract STUDY QUESTION Can mice serve as a translational model to investigate the reproductive effects of testosterone (T) therapy commonly used by transgender men? SUMMARY ANSWER T enanthate subcutaneous injections at 0.45 mg twice weekly can be used in the postpubertal C57BL/6N female mouse to investigate the reproductive effects of T therapy given to transgender men. WHAT IS KNOWN ALREADY Most models of T treatment in female mice involve prenatal or prepubertal administration, which are not applicable to transgender men who often begin T therapy after puberty. Studies that have looked at the impact of postpubertal T treatment in female mice have generally not investigated reproductive outcomes. STUDY DESIGN, SIZE, DURATION A total of 20 C57BL/6N female mice were used for this study. Study groups (n = 5 mice per group) included sesame oil vehicle controls and three doses of T enanthate (0.225, 0.45 and 0.90 mg). Mice were injected subcutaneously twice weekly for 6 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Daily vaginal cytology was performed prior to initiation of treatment to confirm that all mice were cycling. At 8–9 weeks of age, therapy with subcutaneous T enanthate (0.225, 0.45 or 0.90 mg) or the vehicle control was begun. T therapy continued for 6 weeks, at which point mice were sacrificed and compared to control mice sacrificed during diestrus/metestrus. Data collected included daily vaginal cytology, weekly and terminal reproductive hormone levels, terminal body/organ weights/measurements, ovarian follicular distribution/morphology and corpora lutea counts. MAIN RESULTS AND THE ROLE OF CHANCE Of the mice treated with 0.90 mg T enanthate, two of five mice experienced vaginal prolapse, so this group was excluded from further analysis. T enanthate administration twice weekly at 0.225 or 0.45 mg resulted in cessation of cyclicity and persistent diestrus. One of five mice at the 0.225-mg dose resumed cycling after 2.5 weeks of T therapy. As compared to controls, T-treated mice had sustained elevated T levels and luteinizing hormone (LH) suppression in the terminal blood sample. T-treated mice demonstrated increases in clitoral area and atretic cyst-like late antral follicles (0.45 mg only) as compared to controls. No reduction in primordial, primary, secondary or total antral follicle counts was detected in T-treated mice as compared to controls, and T-treated mice demonstrated an absence of corpora lutea. LIMITATIONS, REASONS FOR CAUTION Mouse models can provide us with relevant key findings for further exploration but may not perfectly mirror human reproductive physiology. WIDER IMPLICATIONS OF THE FINDINGS To our knowledge, this report describes the first mouse model mimicking T therapy given to transgender men that facilitates analysis of reproductive changes. This model allows for future studies comparing duration and reversibility of T-induced changes, on the reproductive and other systems. It supports a role for T therapy in suppressing the hypothalamic–pituitary–gonadal axis in adult female mice as evidenced by LH suppression, persistent diestrus and absence of corpora lutea. The increase in atretic cyst-like late antral follicles aligns with the increased prevalence of polycystic ovary morphology seen in case series of transgender men treated with T therapy. The results also suggest that T therapy does not deplete the ovarian reserve. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the American Society for Reproductive Medicine/Society of Reproductive Endocrinology and Infertility Grant and NIH R01-HD098233 to M.B.M. and University of Michigan Office of Research funding (U058227). H.M.K. was supported by the Career Training in Reproductive Biology and Medical Scientist Training Program T32 NIH Training Grants (T32-HD079342, T32-GM07863) as well as the Cellular and Molecular Biology Program. The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core is supported by the Eunice Kennedy Shriver NICHD/NIH (NCTRI) Grant P50-HD28934. E.E.M. consults for Allergan. No other authors have competing interests.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Hadrian M Kinnear ◽  
Prianka H Hashim ◽  
Gillian Rubenstein ◽  
Margaret A Brunette ◽  
Vasantha Padmanabhan ◽  
...  

Abstract The impact and reversibility of long-term gender-affirming testosterone (T) therapy on the reproductive axis of transgender men has not been well-established. Little is known about outcomes for transgender men interested in pausing T therapy to harvest oocytes or get pregnant. We previously established a translational mouse model to investigate T-induced acyclicity and ovarian perturbations. We hypothesized that the duration of T-induced acyclicity would impact the reversibility of cyclic and ovarian changes. To test this hypothesis, T-treated mice were assigned to two groups: (SHORT) 6 weeks of T therapy with immediate reversibility (1.5 mg T propionate pellet implant/removal, n = 5) and (LONG) 6 weeks of T therapy with a prolonged T washout phase (subcutaneous oil injections of T enanthate at 0.9 mg once weekly, n = 5). Control groups (placebo pellets n = 5, sesame oil vehicle injections n = 5) were run in parallel. Estrous cycles were monitored using daily vaginal cytology. Following cessation of T therapy, mice were sacrificed in diestrus after resumption of cyclicity for 4 cycles and ovarian histology examined. Data were analyzed in GraphPad Prism using Welch’s t-test or Mann-Whitney where appropriate. T therapy led to persistent diestrus within a week after T administration for all T-treated mice and none of the controls. The total duration of acyclicity was 6±1 weeks for the SHORT group, which was significantly shorter than the 11±2 weeks for the LONG group (mean ± s.d., p = 0.0079). With resumption of cyclicity, both the SHORT and LONG groups had a significantly lower percentage of days in estrus and higher percentage of days in metestrus as compared to their parallel age-matched controls. Ovarian histology for the SHORT group all showed regular corpora lutea and minimal stromal changes, however, 3/5 mice in the LONG group lacked corpora lutea and 4/5 revealed marked stromal cell hypertrophy. Similar stromal cell changes were not seen in control mice. In conclusion, the length of time of T-induced acyclicity appears to impact the development of stromal cell hypertrophy and formation of corpora lutea even after resumption of cyclicity with similar alterations to the estrous cycles. These findings may have clinical relevance for transgender men interested in fertility, based on duration of gender-affirming T therapy. Future work will aim to separate out the respective contributions of T exposure and acyclicity to the stromal phenotype.


2019 ◽  
Vol 242 (2) ◽  
pp. 115-124 ◽  
Author(s):  
Raul Riquelme ◽  
Freddy Ruz ◽  
Artur Mayerhofer ◽  
Hernán E Lara

An increase in the sympathetic tone in the rat ovary induces a polycystic ovary (PCOS-like) phenotype. No information exists about its impact on fertility. In contrast, increased follicular development and improved fertility in rats were found after pharmacological inhibition of acetylcholinesterase, which increased intraovarian acetylcholine (ACh). Now, we studied the impact of sympathetic stress, followed by a recovery period without stress, on the cholinergic and noradrenergic systems of the rat ovary and on fertility. To activate ovarian sympathetic nerves, female Sprague–Dawley rats were exposed to cold stress (4°C/3 h day for 28 days; first period), followed by a 28-day period without cold stress (second period). No changes in estrous cyclicity during the first period was found. At the end of this period, ovarian levels of NA and ACh were increased. Morphometric analysis showed lower numbers of secondary and antral follicles, enhanced follicular atresia and fewer corpora lutea. Plasma progesterone was lower and testosterone was higher than that in controls. At end of the second period, ovarian ACh levels had returned to control levels, but NA levels remained elevated. The second period was also characterized by the presence of cystic follicles in the ovary, by elevated plasma testosterone and estradiol levels, while progesterone levels were decreased. Estrous cyclicity and ovulation during that period were irregular and fertility decreased. Thus, cold stress initially activated both ovarian noradrenergic and cholinergic system. After stress, the ovary did not fully recover and activation of the noradrenergic system persisted and correlated with cystic ovarian morphology and decreased fertility.


2013 ◽  
Vol 305 (6) ◽  
pp. E717-E726 ◽  
Author(s):  
Xiaobing B. Cheng ◽  
Mark Jimenez ◽  
Reena Desai ◽  
Linda J. Middleton ◽  
Shai R. Joseph ◽  
...  

Homozygous androgen receptor (AR)-knockout (ARKO) female mice are subfertile due to both intra- and extraovarian (neuroendocrine) defects as defined by ovary transplantation. Using ARKO mice, this study set out to reveal the precise AR-regulated pathways required for optimal androgen-regulated ovulation and fertility. ARKO females exhibit deficient neuroendocrine negative feedback, with a reduced serum luteinizing hormone (LH) response to ovariectomy (OVX) ( P < 0.01). Positive feedback is also altered as intact ARKO females, at late proestrus, exhibit an often mistimed endogenous ovulatory LH surge. Furthermore, at late proestrus, intact ARKO females display diminished preovulatory serum estradiol (E2; P < 0.01) and LH ( P < 0.05) surge levels and reduced Kiss1 mRNA expression in the anteroventral periventricular nucleus ( P < 0.01) compared with controls. However, this reduced ovulatory LH response in intact ARKO females can be rescued by OVX and E2 priming or treatment with endogenous GnRH. These findings reveal that AR regulates the negative feedback response to E2, E2-positive feedback is compromised in ARKO mice, and AR-regulated negative and positive steroidal feedback pathways impact on intrahypothalamic control of the kisspeptin/GnRH/LH cascade. In addition, intraovarian AR-regulated pathways controlling antral to preovulatory follicle dynamics are disrupted because adult ARKO ovaries collected at proestrus have small antral follicles with reduced oocyte/follicle diameter ratios ( P < 0.01) and increased proportions of unhealthy large antral follicles ( P < 0.05) compared with controls. As a consequence of aberrant follicular growth patterns, proestrus ARKO ovaries also exhibit fewer preovulatory follicle ( P < 0.05) and corpora lutea numbers ( P < 0.01). However, embryo development to the blastocyst stage is unchanged in ARKO females, and hence, the subfertility is a consequence of reduced ovulations and not altered embryo quality. These findings reveal that the AR has a functional role in neuroendocrine regulation and timing of the ovulatory LH surge as well as antral/preovulatory follicle development.


Author(s):  
Reza Asghari ◽  
Vahid Shokri-Asl ◽  
Hanieh Rezaei ◽  
Mahmood Tavallaie ◽  
Mostafa Khafaei ◽  
...  

Objective: In humans, polycystic ovary syndrome (PCOS) is an androgen-dependent ovarian disorder. Aberrant gene expression in folliculogenesis can arrest the transition of preantral to antral follicles, leading to PCOS. We explored the possible role of altered gene expression in preantral follicles of estradiol valerate (EV) induced polycystic ovaries (PCO) in a mouse model.Methods: Twenty female balb/c mice (8 weeks, 20.0±1.5 g) were grouped into control and PCO groups. PCO was induced by intramuscular EV injection. After 8 weeks, the animals were killed by cervical dislocation. Blood serum (for hormonal assessments using the enzyme-linked immunosorbent assay technique) was aspirated, and ovaries (the right ovary for histological examinations and the left for quantitative real-time polymerase) were dissected. Results: Compared to the control group, the PCO group showed significantly lower values for the mean body weight, number of preantral and antral follicles, serum levels of estradiol, luteinizing hormone, testosterone, and follicle-stimulating hormone, and gene expression of TGFB1, GDF-9 and BMPR2 (p<0.05). Serum progesterone levels were significantly higher in the PCO animals than in the control group (p<0.05). No significant between-group differences (p>0.05) were found in BMP6 or BMP15 expression. Conclusions: In animals with EV-induced PCO, the preantral follicles did not develop into antral follicles. In this mouse model, the gene expression of TGFB1, GDF9, and BMPR2 was lower in preantral follicles, which is probably related to the pathologic conditions of PCO. Hypoandrogenism was also detected in this EV-induced murine PCO model.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Alexandra Cara ◽  
Laura Lynn Burger ◽  
Martin Grosvenor Myers ◽  
Karel De Gendt ◽  
Sue Moenter ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, and is characterized by hyperandrogenism, oligo/anovulation, and/or polycystic ovaries. Many women with PCOS also suffer from adverse metabolic phenotypes, including central adiposity, insulin resistance, and glucose intolerance, which can exacerbate reproductive dysfunction. Androgens can act upon androgen receptors (AR), which are expressed in many reproductive and metabolic tissues, and contribute to the pathogenesis of PCOS. AR are highly expressed in the neuroendocrine hypothalamus in areas which regulate the hypothalamic-pituitary-gonadal axis and contribute to the central regulation of metabolism. Many phenotypes of PCOS can be modelled in rodents by administration of the non-aromatizable androgen dihydrotestosterone (DHT) during critical periods of development. Neuronal AR is key in the development of PCOS, as female mice with neuronal AR deletion who are exposed to androgen excess are protected against development of anovulation, polycystic ovaries, and metabolic abnormalities. Yet it is not known which populations of neurons confers this protection. We hypothesize that leptin-receptor (LepR) neurons participate in the pathogenesis of PCOS, as sub-populations of LepR neurons co-express AR in the hypothalamus, and LepR neurons are critical in the central regulation of energy homeostasis, and exert permissive actions on puberty and fertility. We have pre-natally androgenized (PNA) a mouse model of AR deletion specifically in LepR cells (LepRΔAR) and are conducting reproductive and metabolic phenotyping. As previously demonstrated, control PNA females show long periods of acyclicity, whereas LepRΔAR PNA female mice show a similar number of days in each stage of the estrous cycle, number of cycles, and cycle length as vehicle treated LepRΔAR females. Our findings indicate that a subpopulation of AR/LepR cells mediate the effects of prenatal androgen excess on female estrous cycles in a mouse model of PCOS-like phenotype.


2018 ◽  
Vol 110 (4) ◽  
pp. e21
Author(s):  
M.B. Moravek ◽  
H.M. Kinnear ◽  
E.S. Constance ◽  
A. David ◽  
E.E. Marsh ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Valentina Rodriguez Paris ◽  
Samantha M. Solon-Biet ◽  
Alistair M. Senior ◽  
Melissa C. Edwards ◽  
Reena Desai ◽  
...  

Abstract Lifestyle, mainly dietary, interventions are first-line treatment for women with polycystic ovary syndrome (PCOS), but the optimal diet remains undefined. We combined a hyperandrogenized PCOS mouse model with a systematic macronutrient approach, to elucidate the impact of dietary macronutrients on the development of PCOS. We identify that an optimum dietary macronutrient balance of a low protein, medium carbohydrate and fat diet can ameliorate key PCOS reproductive traits. However, PCOS mice display a hindered ability for their metabolic system to respond to diet variations, and varying macronutrient balance did not have a beneficial effect on the development of metabolic PCOS traits. We reveal that PCOS traits in a hyperandrogenic PCOS mouse model are ameliorated selectively by diet, with reproductive traits displaying greater sensitivity than metabolic traits to dietary macronutrient balance. Hence, providing evidence to support the development of evidence-based dietary interventions as a promising strategy for the treatment of PCOS, especially reproductive traits.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1612-P
Author(s):  
NADIRA SULTANA KAKOLY ◽  
ARUL EARNEST ◽  
HELENA TEEDE ◽  
LISA MORAN ◽  
DEBORAH LOXTON ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1875-P ◽  
Author(s):  
EMI ISHIDA ◽  
XIAO LEI ◽  
EIJIRO YAMADA ◽  
SHUICHI OKADA ◽  
MASANOBU YAMADA

Sign in / Sign up

Export Citation Format

Share Document