scholarly journals Spatio-temporal associations of albacore CPUEs in the Northeastern Pacific with regional SST and climate environmental variables

2014 ◽  
Vol 71 (7) ◽  
pp. 1717-1727 ◽  
Author(s):  
A. Jason Phillips ◽  
Lorenzo Ciannelli ◽  
Richard D. Brodeur ◽  
William G. Pearcy ◽  
John Childers

Abstract This study investigated the spatial distribution of juvenile North Pacific albacore (Thunnus alalunga) in relation to local environmental variability [i.e. sea surface temperature (SST)], and two large-scale indices of climate variability, [the Pacific Decadal Oscillation (PDO) and the Multivariate El Niño/Southern Oscillation Index (MEI)]. Changes in local and climate variables were correlated with 48 years of albacore troll catch per unit effort (CPUE) in 1° latitude/longitude cells, using threshold Generalized Additive Mixed Models (tGAMMs). Model terms were included to account for non-stationary and spatially variable effects of the intervening covariates on albacore CPUE. Results indicate that SST had a positive and spatially variable effect on albacore CPUE, with increasingly positive effects to the North, while PDO had an overall negative effect. Although albacore CPUE increased with SST both before and after a threshold year of 1986, such effect geographically shifted north after 1986. This is the first study to demonstrate the non-stationary spatial dynamics of albacore tuna, linked with a major shift of the North Pacific. Results imply that if ocean temperatures continue to increase, US west coast fisher communities reliant on commercial albacore fisheries are likely to be negatively affected in the southern areas but positively affected in the northern areas, where current albacore landings are highest.

2016 ◽  
Vol 31 (3) ◽  
pp. 895-916 ◽  
Author(s):  
Weiwei Li ◽  
Zhuo Wang ◽  
Melinda S. Peng

Abstract Tropical cyclone (TC) forecasts from the NCEP Global Ensemble Forecasting System (GEFS) Reforecast version 2 (1985–2012) were evaluated from the climate perspective, with a focus on tropical cyclogenesis. Although the GEFS captures the climatological seasonality of tropical cyclogenesis over different ocean basins reasonably well, large errors exist on the regional scale. As different genesis pathways are dominant over different ocean basins, genesis biases are related to biases in different aspects of the large-scale or synoptic-scale circulations over different basins. The negative genesis biases over the western North Pacific are associated with a weaker-than-observed monsoon trough in the GEFS, the erroneous genesis pattern over the eastern North Pacific is related to a southward displacement of the ITCZ, and the positive genesis biases near the Cape Verde islands and negative biases farther downstream over the Atlantic can be attributed to the hyperactive Africa easterly waves in the GEFS. The interannual and subseasonal variability of TC activity in the reforecasts was also examined to evaluate the potential skill of the GEFS in providing subseasonal and seasonal predictions. The GEFS skillfully captures the interannual variability of TC activity over the North Pacific and the North Atlantic, which can be attributed to the modulation of TCs by the El Niño–Southern Oscillation (ENSO) and the Atlantic meridional mode (AMM). The GEFS shows promising skill in predicting the active and inactive periods of TC activity over the Atlantic. The skill, however, has large fluctuations from year to year. The analysis presented herein suggests possible impacts of ENSO, the Madden–Julian oscillation (MJO), and the AMM on the TC subseasonal predictability.


2019 ◽  
Vol 197 ◽  
pp. 166-181 ◽  
Author(s):  
G. V. Khen ◽  
E. I. Ustinova ◽  
Yu. D. Sorokin

 Climatic indices reflecting the environmental conditions and patterns of their variability in the entire northern Pacific and in its local regions are overviewed. Their physical nature and mechanisms of the processes, their geography and methods of calculation are presented, with citing of the first descriptions. Among a variety of global and regional climatic indices concern ing the North Pacific, the following ones are described: the indices of Arctic Oscillation (AO), El Niño — Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Aleutian Low Pressure Index (ALPI), Siberian High Index (SHI), North Pacific Index (NPI), Pacific/North American (PNA) Index, and West Pacific Index (WP). AO is a large-scale index of atmospheric circulation reflecting the processes both in the troposphere and stratosphere, where «pumping» of air masses between the high and moderate latitudes occurs continuously. ENSO is also a large-scale index that reflects large-scale interactions in the fields of temperature, atmospheric pressure, wind, and cloudiness over the whole Pacific. Other indices are rather regional, since their influence does not extend far beyond the limits of the domains of their definition. Nevertheless, their role in environmental fluctuations in certain areas could be significant and their influence could be traced throughout the Northern Hemisphere.


2006 ◽  
Vol 134 (12) ◽  
pp. 3567-3587 ◽  
Author(s):  
Linda M. Keller ◽  
Michael C. Morgan ◽  
David D. Houghton ◽  
Ross A. Lazear

Abstract A climatology of large-scale, persistent cyclonic flow anomalies over the North Pacific was constructed using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis data for the cold season (November–March) for 1977–2003. These large-scale cyclone (LSC) events were identified as those periods for which the filtered geopotential height anomaly at a given analysis point was at least 100 m below its average for the date for at least 10 days. This study identifies a region of maximum frequency of LSC events at 45°N, 160°W [key point 1 (KP1)] for the entire period. This point is somewhat to the east of regions of maximum height variability noted in previous studies. A second key point (37.5°N, 162.5°W) was defined as the maximum in LSC frequency for the period after November 1988. The authors show that the difference in location of maximum LSC frequency is linked to a climate regime shift at about that time. LSC events occur with a maximum frequency in the period from November through January. A composite 500-hPa synoptic evolution, constructed relative to the event onset, suggests that the upper-tropospheric precursor for LSC events emerges from a quasi-stationary long-wave trough positioned off the east coast of Asia. In the middle and lower troposphere, the events are accompanied by cold thickness advection from a thermal trough over northeastern Asia. The composite mean sea level evolution reveals a cyclone that deepens while moving from the coast of Asia into the central Pacific. As the cyclone amplifies, it slows down in the central Pacific and becomes nearly stationary within a day of onset. Following onset, at 500 hPa, a stationary wave pattern, resembling the Pacific–North American teleconnection pattern, emerges with a ridge immediately downstream (over western North America) and a trough farther downstream (from the southeast coast of the United States into the western North Atlantic). The implications for the resulting sensible weather and predictability of the flow are discussed. An adjoint-derived sensitivity study was conducted for one of the KP1 cases identified in the climatology. The results provide dynamical confirmation of the LSC precursor identification for the events. The upper-tropospheric precursor is seen to play a key role not only in the onset of the lower-tropospheric height falls and concomitant circulation increases, but also in the eastward extension of the polar jet across the Pacific. The evolution of the forecast sensitivities suggest that LSC events are not a manifestation of a modal instability of the time mean flow, but rather the growth of a favorably configured perturbation on the flow.


2021 ◽  
Author(s):  
Yama Dixit ◽  
Stephen Chua ◽  
Yu Ting Yan ◽  
Adam Switzer

<p>The Maritime Continent (MC) is located within the Indo-Pacific Warm Pool, which is known as the largest area of warm sea surface temperatures with the highest rainfall on Earth that drives the global atmospheric and hydrologic circulation. The complex climatic system of the MC is controlled by large-scale phenomena such as the seasonal migration of the Intertropical Convergence Zone which causes the northwest and southeast monsoon circulation in the region as well as tropical Indo-Pacific climate phenomena, the Indian Ocean Dipole in the west and the El Niño-Southern Oscillation operating to the east of the MC. In addition to interactions of these climate phenomena, their influence varies across the region due to island topography and ocean–atmosphere fluxes. Despite dedicated efforts, a comprehensive picture of the impacts of abrupt climate events such as the ‘8.2 ka event’ during the Holocene on the MC has proved elusive. Here we use sedimentology and stable isotopes of benthic foraminifera collected from the marginal marine sediments off the Kallang River Basin, Singapore to reconstruct paleoenvironmental history of the early-mid Holocene. Owing to the high sedimentation rate (~4.4 mm/yr), the timing and nature of the ‘8.2 ka event’ was examined in detail in this region making this an invaluable and unique archive to study up to sub-centennial changes. Comparison of the Kallang record with other high-resolution marine and absolutely dated terrestrial archives speleothems revealed that the timing of the onset of ‘8.2 ka event’ in the western IPWP region lags the cooling in the North Atlantic and that of Asian and Indian monsoon failure, by ~100years possibly implying a north-south signal propagation. The termination of the ‘8.2 ka event’, however may have occurred near synchronously between high and low tropical regions at ~7.96ka BP possibly linked via both atmospheric and oceanic processes.</p><p> </p>


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 211 ◽  
Author(s):  
Jian Rao ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Chunhua Shi ◽  
Dong Guo

Using reanalysis and the sea surface temperature (SST) analysis, the combined impact of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the northern winter stratosphere is investigated. The warm and weak stratospheric polar vortex response to El Niño simply appears during positive PDO, whereas the cold and strong stratospheric polar vortex response to La Niña is preferable during negative PDO in the reanalysis. Two mechanisms may account for the enhanced stratospheric response when ENSO and PDO are in phase. First, the asymmetries of the intensity and frequency between El Niño and La Niña can be identified for the two PDO phases. Second, the extratropical SST anomalies in the North Pacific may also play a role in the varying extratropical response to ENSO. The North Pacific SST anomalies related to PDO superimpose ENSO SST anomalies when they are in phase but undermine them when they are out of phase. The superimposed North Pacific SST anomalies help to increase SST meridional gradient anomalies between tropical and extratropics, as well as to lock the local height response to ENSO. Therefore, the passages for the upward propagation of waves from the troposphere is more unimpeded when positive PDO is configured with El Niño, and vice versa when negative PDO is configured with La Niña.


2016 ◽  
Author(s):  
Luca Pozzoli ◽  
Srdan Dobricic ◽  
Simone Russo ◽  
Elisabetta Vignati

Abstract. Winter warming and sea ice retreat observed in the Arctic in the last decades determine changes of large scale atmospheric circulation pattern that may impact as well the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a new statistical algorithm, based on the Maximum Likelihood Estimate approach, to determine how the changes of three large scale weather patterns (the North Atlantic Oscillation, the Scandinavian Blocking, and the El Nino-Southern Oscillation), associated with winter increasing temperatures and sea ice retreat in the Arctic, impact the transport of BC to the Arctic and its deposition. We found that the three atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the Eastern Arctic while they increase BC deposition in the Western Arctic. The increasing trend is mainly due to the more frequent occurrences of stable high pressure systems (atmospheric blocking) near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. The North Atlantic Oscillation has a smaller impact on BC deposition in the Arctic, but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The El Nino-Southern Oscillation does not influence significantly the transport and deposition of BC to the Arctic. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.


2012 ◽  
Vol 140 (4) ◽  
pp. 1067-1080 ◽  
Author(s):  
Bing Fu ◽  
Melinda S. Peng ◽  
Tim Li ◽  
Duane E. Stevens

Global daily reanalysis fields from the Navy Operational Global Atmospheric Prediction System (NOGAPS) are used to analyze Northern Hemisphere summertime (June–September) developing and nondeveloping disturbances for tropical cyclone (TC) formation from 2003 to 2008. This is Part II of the study focusing on the western North Pacific (WNP), following Part I for the North Atlantic (NATL) basin. Tropical cyclone genesis in the WNP shows different characteristics from that in the NATL in both large-scale environmental conditions and prestorm disturbances. A box difference index (BDI) is used to identify parameters in differentiating between the developing and nondeveloping disturbances. In order of importance, they are 1) 800-hPa maximum relative vorticity, 2) rain rate, 3) vertically averaged horizontal shear, 4) vertically averaged divergence, 5) 925–400-hPa water vapor content, 6) SST, and 7) translational speed. The study indicates that dynamic variables are more important in TC genesis in the WNP, while in Part I of the study the thermodynamic variables are identified as more important in the NATL. The characteristic differences between the WNP and the NATL are compared.


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Josué M. Polanco-Martínez ◽  
Javier Fernández-Macho ◽  
Martín Medina-Elizalde

AbstractThe wavelet local multiple correlation (WLMC) is introduced for the first time in the study of climate dynamics inferred from multivariate climate time series. To exemplify the use of WLMC with real climate data, we analyse Last Millennium (LM) relationships among several large-scale reconstructed climate variables characterizing North Atlantic: i.e. sea surface temperatures (SST) from the tropical cyclone main developmental region (MDR), the El Niño-Southern Oscillation (ENSO), the North Atlantic Multidecadal Oscillation (AMO), and tropical cyclone counts (TC). We examine the former three large-scale variables because they are known to influence North Atlantic tropical cyclone activity and because their underlying drivers are still under investigation. WLMC results obtained for these multivariate climate time series suggest that: (1) MDRSST and AMO show the highest correlation with each other and with respect to the TC record over the last millennium, and: (2) MDRSST is the dominant climate variable that explains TC temporal variability. WLMC results confirm that this method is able to capture the most fundamental information contained in multivariate climate time series and is suitable to investigate correlation among climate time series in a multivariate context.


Sign in / Sign up

Export Citation Format

Share Document