scholarly journals Clarifying the concept of climate change refugia for coral reefs

2017 ◽  
Vol 75 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Javid Kavousi ◽  
Gunnar Keppel

Abstract Refugia can facilitate the persistence of biodiversity under changing environmental conditions, such as anthropogenic climate change, and therefore constitute the best chance of survival for many coral species in the wild. Despite an increasing amount of literature, the concept of coral reef refugia remains poorly defined; so that climate change refugia have been confused with other phenomena, including temporal refuges, pristine habitats and physiological processes such as adaptation and acclimatization. We propose six criteria that determine the capacity of refugia to facilitate species persistence, including long-term buffering, protection from multiple climatic stressors, accessibility, microclimatic heterogeneity, size, and low exposure to non-climate disturbances. Any effective, high-capacity coral reef refugium should be characterized by long-term buffering of environmental conditions (for several decades) and multi-stressor buffering (provision of suitable environmental conditions with respect to climatic change, particularly ocean warming and acidification). Although not always essential, the remaining criteria are important for quantifying the capacity of potential refugia.

2021 ◽  
Vol 9 ◽  
Author(s):  
Tamar L. Goulet ◽  
Denis Goulet

Symbiotic relationships enable partners to thrive and survive in habitats where they would either not be as successful, or potentially not exist, without the symbiosis. The coral reef ecosystem, and its immense biodiversity, relies on the symbioses between cnidarians (e.g., scleractinian corals, octocorals, sea anemones, jellyfish) and multiple organisms including dinoflagellate algae (family Symbiodiniaceae), bivalves, crabs, shrimps, and fishes. In this review, we discuss the ramifications of whether coral reef cnidarian symbioses are obligatory, whereby at least one of the partners must be in the symbiosis in order to survive or are facultative. Furthermore, we cover the consequences of cnidarian symbioses exhibiting partner flexibility or fidelity. Fidelity, where a symbiotic partner can only engage in symbiosis with a subset of partners, may be absolute or context dependent. Current literature demonstrates that many cnidarian symbioses are highly obligative and appear to exhibit absolute fidelity. Consequently, for many coral reef cnidarian symbioses, surviving changing environmental conditions will depend on the robustness and potential plasticity of the existing host-symbiont(s) combination. If environmental conditions detrimentally affect even one component of this symbiotic consortium, it may lead to a cascade effect and the collapse of the entire symbiosis. Symbiosis is at the heart of the coral reef ecosystem, its existence, and its high biodiversity. Climate change may cause the demise of some of the cnidarian symbioses, leading to subsequent reduction in biodiversity on coral reefs.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 251
Author(s):  
Adi Zweifler (Zvifler) ◽  
Michael O’Leary ◽  
Kyle Morgan ◽  
Nicola K. Browne

Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.


2020 ◽  
pp. 227-238
Author(s):  
Brian Helmuth

Ectothermic organisms experience their local environments in ways that humans can have difficulty conceptualizing. Physics-based (ecomechanical) approaches, for example heat budget models, can lend insights into how an organism’s very local environmental conditions (microclimate) can drive niche-level conditions such as body temperature; these in turn drive physiological processes. Quantitative methods also allow insights into the temporal and spatial scales that may ultimately determine responses to larger-scale environmental change. For example, for small, sessile organisms, microhabitats such as crevices in rocks may provide microrefugia that allow survival during heat waves. As a result, larger-scale recovery following heat waves (rescue effects) may ultimately be influenced by much smaller-scale processes. Ecomechanics techniques also facilitate the use of interventions such as shading that can maintain environmental conditions within physiological tolerance levels.


2021 ◽  
Vol 8 ◽  
Author(s):  
Laurence H. De Clippele ◽  
Denise Risch

This study compares the noise levels at the cold-water coral Tisler reef, before and after the closure of the border between Norway and Sweden, which occurred as a direct result of the COVID-19 pandemic. The Tisler reef is a marine protected area located under a ferry “highway” that connects Norway and Sweden. Cold-water coral reefs are recognised as being important hotspots of both biodiversity and biomass, they function as breeding and nursing grounds for commercially important fish and are essential in providing ecosystem functions. Whilst studies have shown that fishery, ocean warming, and acidification threaten them, the effects of noise pollution on cold-water coral reefs remains unstudied. To study the severity of noise pollution at the Tisler reef, a long-term acoustic recorder was deployed from 29 January 2020 until 26 May 2020. From 15 March COVID-19 lockdown measures stopped passenger vessel traffic between Norway and Sweden. This study found that the overall noise levels were significantly lower after border closure, due to reduced ferry traffic, wind speeds, and sea level height. When comparing the median hourly noise levels of before vs. after border closure, this study measured a significant reduction in the 63–125 Hz 1/3 octave band noise levels of 8.94 ± 0.88 (MAD) dB during the day (07:00:00–19:59:59) and 1.94 ± 0.11 (MAD) dB during the night (20:00:00–06:59:59). Since there was no ferry traffic during the night, the drop in noise levels at night was likely driven by seasonal changes, i.e., the reduction in wind speed and sea level height when transitioning from winter to spring. Taking into account this seasonal effect, it can be deduced that the COVID-19 border closure reduced the noise levels in the 63–125 Hz 1/3 octave bands at the Tisler reef by 7.0 ± 0.99 (MAD) dB during the day. While the contribution of, and changes in biological, weather-related and geophysical sound sources remain to be assessed in more detail, understanding the extent of anthropogenic noise pollution at the Tisler cold-water coral reef is critical to guide effective management to ensure the long-term health and conservation of its ecosystem functions.


2021 ◽  
Author(s):  
Christopher Jury ◽  
Keisha Bahr ◽  
Evan Barba ◽  
Russell Brainard ◽  
Annick Cros ◽  
...  

Abstract Coral reefs are among the most sensitive ecosystems affected by ocean acidification and warming, and are predicted to shift from net accreting calcifier-dominated systems to net eroding algal-dominated systems over the coming decades. Here we present a long-term experimental study examining the responses of entire mesocosm coral reef communities to acidification (-0.2 pH units), warming (+ 2°C), and combined future ocean (-0.2 pH, + 2°C) treatments. We show that under future ocean conditions, net calcification rates declined yet remained positive, corals showed reduced abundance yet were not extirpated, and community composition shifted while species richness was maintained. Our results suggest that under Paris Climate Agreement targets, coral reefs could persist in an altered functional state rather than collapse.


2021 ◽  
Vol 17 (1) ◽  
pp. 35-45
Author(s):  
Dicky Sahetapy ◽  
Laura Siahainenia ◽  
Debby A J Selanno ◽  
Johannes M S Tetelepta ◽  
Novianty C Tuhumury

Coral reef is one of the important coastal ecosystems that have high biodiversity. This study aims to analyze the composition of the taxa and the distribution of coral species, the ecological index of coral communities and the status of coral reefs. The research was conducted from April-May 2019 in the coastal waters of Hukurila Village, South Leitimur District, Ambon City. Collecting coral data by using the Line Intercept Transect (LIT) method. Determination of coral reef condition based on percent data (value) of coral reef cover. During the study, 116 species of stony coral from 49 genera and 16 families were found, which 50 species of them are protected and 23 species of ornamental coral. The similarity index of stony coral species between coral reef locations ranges from 0.52-0.76 or there is the similarity of stony coral species between locations coral reef in the amount of 52-76%. The coral reefs of Hukurila Village have high diversity of coral species, with a low dominance of coral species in the community, and the compatibility of coral species in the community is classified as stable. Acropora corals contributed a low covering percent value (9.98%), while Non-Acropora corals contributed a relatively high percent of covering value (43.56%). The status of coral reefs between locations in the coastal waters of Hukurila Village is in the criteria of good (healthy).   ABSTRAK Terumbu karang merupakan salah satu ekosistem pesisir penting yang emiliki kenanekaragaman hayati tinggi. Penelitian ini bertujuan untuk menganalisis komposisi taksa dan sebaran spesies karang, indeks ekologi kominitas karang dan status terumbu karang. Penelitian dilakukan dari April-Mei 2019 di perairan pesisir Negeri Hukurila Kecamatan Leitimur Selatan Kota Ambon. Pengumpulan data karang menggunakan metode Line Intercept Transect (LIT). Penentuan kondisi terumbu karang berdasarkan data (nilai) persen penutupan karang batu. Selama penelitian ditemukan 116 spesies karang batu dari 49 genera dan 16 famili, dimana 50 spesies diantaranya dilindungi dan 23 spesies karang hias. Indeks similaritas spesies karang batu antar stasiun terumbu karang berkisar antara 0,52-0,76 atau terdapat kesamaan spesies karang batu antar lokasi terumbu karang sebesar 52-76%. Terumbu karang Negeri Hukurila memiliki diversitas spesies karang tinggi, dengan dominansi spesies karang rendah dalam komunitas, dan keserasian spesies karang dalam komunitas tergolong stabil. Karang Acropora memberi kontribusi nilai persen penutupan rendah (9,98%), sementara karang Non-Acropora memberi kontribusi nilai persen penutupan karang batu relatif tinggi (43,56%). Status terumbu karang antar stasiun terumbu perairan pesisir Negeri Hukurila berada dalam kriteria baik (sehat).   Kata kunci: terumbu, karang batu, keragaman spesies, kesamaan, persen penutupan


2012 ◽  
Vol 69 (7) ◽  
pp. 1160-1167 ◽  
Author(s):  
Alan C. Haynie ◽  
Lisa Pfeiffer

Abstract Haynie, A. C., and Pfeiffer, L. 2012. Why economics matters for understanding the effects of climate change on fisheries. – ICES Journal of Marine Science, 69: . Research attempting to predict the effect of climate change on fisheries often neglects to consider how harvesters respond to changing economic, institutional, and environmental conditions, which leads to the overly simplistic prediction of “fisheries follow fish”. However, climate effects on fisheries can be complex because they arise through physical, biological, and economic mechanisms that interact or may not be well understood. Although most researchers find it obvious to include physical and biological factors in predicting the effects of climate change on fisheries, the behaviour of fish harvesters also matters for these predictions. A general but succinct conceptual framework for investigating the effects of climate change on fisheries that incorporates the biological and economic factors that determine how fisheries operate is presented. The use of this framework will result in more complete, reliable, and relevant investigations of the effects of climate change on fisheries. The uncertainty surrounding long-term projections, however, is inherent in the complexity of the system.


Zootaxa ◽  
2021 ◽  
Vol 4988 (1) ◽  
pp. 1-218
Author(s):  
JUDITH E. WINSTON ◽  
JEREMY B.C. JACKSON

As part of a long-term ecological study of the cryptic comunity of Jamaican coral reefs carried out by Jeremy B.C. Jackson and associates during the 1970s and early 1980s, collections were made of reef bryozoans found at 14 sites around the island. Space occupied by bryozoans on undercoral surfaces is dominated by relatively few species. However, during scanning electrone microscopy study and monograph preparation a diverse assortment of relatively rare species was discovered. Of the 132 species found, 56%, 74 species (70 cheilostomes and 4 cyclostomes) are new, as are one family (Inversiscaphidae) and 5 genera (Planospinella, Caribaria, Spirocoleopora, Gemellitheca, and Palliocella).  


Author(s):  
Carlos V C Weiss ◽  
Melisa Menendez ◽  
Bárbara Ondiviela ◽  
Raúl Guanche ◽  
Iñigo J Losada ◽  
...  

Abstract The development of the marine renewable energy and offshore aquaculture sectors is susceptible to being affected by climate change. Consequently, for the long-term planning of these activities, a holistic view on the effects of climate change on energy resources and environmental conditions is required. Based on present climate and future climate scenario, favourable conditions for wind and wave energy exploitation and for farming six marine fish species are assessed using a suitability index over all European regional seas. Regarding available energy potential, the estimated changes in climate do not have direct impacts on the geographic distribution of potential regions for the energy industry (both wind and wave based), that is they pose no threat to this industry. Long-term changes in environmental conditions could however require adaptation of the aquaculture sector and especially of its exploitation areas. Opportunities for aquaculture expansion of the assessed species are identified. Possibilities for co-location of these activities are observed in the different climate scenarios. The evaluation of potential zones for the exploitation of marine renewable energy resources and offshore aquaculture represents a stepping-stone, useful for improving decision-making and assisting in the management of marine economies both in the short-term and in the long-term development of these sectors.


1995 ◽  
Vol 2 (2) ◽  
pp. 142 ◽  
Author(s):  
Ann L. Poulsen

Large, colourful coral reef gastropods including the Giant Triton Charonia tritonis,helmet shells (Cassidae), cowries (Cypraeidae) and volutes (Volutidae) are exploited in an unregulated and unsustainable way throughout much of the Indo-Pacific region. The consequences for their populations, for the populations of their prey or for the ecology of their habitats are rarely considered. Serious decline in stocks of edible coral reef molluscs through unregulated harvesting demonstrates the need for controls on the collection and trade of commercially important species. Continued, unrestricted collecting will eventually lead to the local extinction of vulnerable species on substantial numbers of reefs. Research on the biology and ecology of ornamental species is urgently needed to facilitate the implementation of appropriate management strategies for long-term utilization. A co-operative effort to monitor and regulate trade will also contribute toward the maintenance of sustainable gastropod populations on coral reefs.


Sign in / Sign up

Export Citation Format

Share Document