scholarly journals Harmful algal blooms and climate change: exploring future distribution changes

2018 ◽  
Vol 75 (6) ◽  
pp. 1882-1893 ◽  
Author(s):  
Bryony L Townhill ◽  
Jonathan Tinker ◽  
Miranda Jones ◽  
Sophie Pitois ◽  
Veronique Creach ◽  
...  

Abstract Harmful algae can cause death in fish, shellfish, marine mammals, and humans, via their toxins or from effects associated with their sheer quantity. There are many species, which cause a variety of problems around north-west Europe, and the frequency and distribution of algal blooms have altered in the recent past. Species distribution modelling was used to understand how harmful algal species may respond in the future to climate change, by considering environmental preferences and how these may shift. Most distribution studies to date use low resolution global model outputs. In this study, high resolution, downscaled shelf seas climate projections for the north-west European shelf were nested within lower resolution global projections, to understand how the distribution of harmful algae may change by the mid to end of century. Projections suggest that the habitat of most species (defined by temperature, salinity, depth, and stratification) will shift north this century, with suitability increasing in the central and northern North Sea. An increase in occurrence here might lead to more frequent detrimental blooms if wind, irradiance and nutrient levels are also suitable. Prioritizing monitoring of species in these susceptible areas could help in establishing early-warning systems for aquaculture and health protection schemes.

2019 ◽  
Vol 76 (1) ◽  
pp. 353-353 ◽  
Author(s):  
Bryony L Townhill ◽  
Jonathan Tinker ◽  
Miranda Jones ◽  
Sophie Pitois ◽  
Veronique Creach ◽  
...  

2012 ◽  
Vol 69 (8) ◽  
pp. 1377-1379 ◽  
Author(s):  
Daniel L. Roelke ◽  
Sofie Spatharis ◽  
Simon M. Mitrovic

Water cycles are changing because of human population growth and climate change. Such changes will affect fundamental system-level characteristics that in turn will greatly influence ecosystem form and functioning. Here, a collection of papers is offered that furthers our understanding of cause and effect relationships between altered hydrology and various ecosystem properties. Combined, these papers address issues related to inflows, connectivity, and circulation and vertical mixing. In regards to altered inflows, this collection of papers addresses how seagrass bed communities, incidence of some haptophyte harmful algal blooms, and biodiversity of intermittently flowing streams might respond. These papers also address factors that influence connectivity in wetlands, and in the case of a lake and its neighboring wetland, how connectivity between systems can profoundly affect ecosystem form and functioning. Finally, the effects of altered circulation and vertical mixing are addressed as they relate to the spread of some cyanobacteria blooms to higher latitudes. The reader of this collection of papers gains a better appreciation of how ecosystem form and functioning is influenced by hydrologic processes and can conclude that there is a need for continued research in this area to better understand the impacts of human population growth and climate change.


Author(s):  
H.M. Al-Ghelani ◽  
A.Y.A AlKindi ◽  
S. Amer ◽  
Y.K Al-Akhzami

Harmful, toxic algae are now considered as one of the important players in the newly emerging environmental risk factors. The apparent global increase in harmful algal blooms (HABs) is becoming a serious problem in both aquaculture and fisheries populations. Not only has the magnitude and intensity of public health and economic impacts of these blooms increased in recent years, but the number of geographic locations experiencing toxic algal blooms has also increased dramatically. There are two primary factors causing HABs outbreaks. The natural processes such as upwelling and relaxation, and the anthropogenic loading resulting in eutrophication. However, the influence of global climate changes on algal bloom phenomenon cannot be ignored. The problem warrants development of effective strategies for the management and mitigation of HABs. Progress made in the routine coastal monitoring programs, development of methods for detection of algal species and toxins and coastal modeling activities for predicting HABs reflect the international concerns regarding the impacts of HABs. Innovative techniques using molecular probes will hopefully result in development of rapid, reliable screening methods for phycotoxins and the causative organisms.            


2021 ◽  
Author(s):  
Yu Ting Zhang ◽  
Shanshan SONG ◽  
Bin ZHANG ◽  
Yang ZHANG ◽  
Miao TIAN ◽  
...  

Abstract Toxic harmful algal blooms (HABs) can cause deleterious effects in marine organisms, threatening the stability of marine ecosystems. It is well known that different strains, natural populations and growth conditions of the same toxic algal species may lead to different amount of phycotoxin production and the ensuing toxicity. To fully assess the ecological risk of toxic HABs, it is of great importance to investigate the toxic effects of phycotoxins in marine organisms. In this study, the short-term toxicity of 14 common phycotoxins (alone and in combination) in the marine zooplankton Artemia salina was investigated. On the basis of 48 h LC50, the order of toxicity in A. salina was AZA3 (with a LC50 of 0.0203 µg/ml)>AZA2 (0.0273 µg/ml) >PTX2 (0.0396 µg/ml)>DTX1 (0.0819 µg/ml)>AZA1 (0.106 µg/ml)> SPX1 (0.144 µg/ml)>YTX (0.172 µg/ml)>dcSTX (0.668 µg/ml)>OA (0.728 µg/ml)>STX (1.042 µg/ml)>GYM (1.069 µg/ml)>PbTx3 (1.239 µg/ml)>hYTX (1.799 µg/ml)>PbTx2 (2.415 µg/ml). For the binary exposure, additive effects of OA and DTX1, DTX1 and hYTX; antagonistic effects of OA and PTX2, OA and STX; and synergetic effects of DTX1 and STX, DTX1 and YTX, DTX1 and PTX2, PTX2 and hYTX on the mortality of A. salina were observed. These results provide valuable toxicological data for assessing the impact of phycotoxins on marine planktonic species and highlight the potential ecological risk of toxic HABs in marine ecosystems.


2022 ◽  
Vol 10 (1) ◽  
pp. 156
Author(s):  
Loredana Stabili ◽  
Margherita Licciano ◽  
Adriana Giangrande ◽  
Carmela Caroppo

Harmful algal blooms (HABs) are extreme biological events representing a major issue in marine, brackish, and freshwater systems worldwide. Their proliferation is certainly a problem from both ecological and socioeconomic contexts, as harmful algae can affect human health and activities, the marine ecosystem functioning, and the economy of coastal areas. Once HABs establish, valuable and environmentally friendly control actions are needed to reduce their negative impacts. In this study, the influence exerted by the filter-feeding activity of the two sabellid polychaetes Branchiomma luctuosum (Grube) and Sabella spallanzanii (Gmelin) on a harmful dinoflagellate was investigated. Clearance rates (C) and retention efficiencies were estimated by employing the microalga Amphidinium carterae Hulburt. The Cmax was 1.15 ± 0.204 L h−1 g−1 DW for B. luctuosum and 0.936 ± 0.151 L h−1 g−1 DW for S. spallanzanii. The retention efficiency was 72% for B. luctuosum and 68% for S. spallanzanii. Maximum retention was recorded after 30 min for both species. The obtained results contribute to the knowledge of the two polychaetes’ filtration activity and to characterize the filtration process on harmful microalgae in light of the protection of water resources and human health. Both species, indeed, were extremely efficient in removing A. carterae from seawater, thus suggesting their employment as a new tool in mitigation technologies for the control of harmful algae in marine environments, as well as in the aquaculture facilities where HABs are one of the most critical threats.


2020 ◽  
Author(s):  
Ruby E. Jalgaonwala

Problematic harmful algal bloom is wide and tenacious, upsetting estuaries, coasts, and freshwaters system throughout the ecosphere, alongside disturbing human health, social life as well as national economy. Particular environmental factors supports growth of algal blooms, temperature always is significant when speaking about water-ecosystem. Disparity in temperature also found to affect the interaction of physical, chemical and biological parameters so it is equally imperative to consider effects of climate change, as change in climatic conditions supports unwanted growth of algae. Also inconsistency in climate equally contributes to the apparent increases of HAB, therefore effects of climate change needs to be totally comprehended along with development of the risk assessments and effective management of HABs. Increased HAB activities have a direct negative effect on ecosystems and they can frequently have a direct commercial impact on aquaculture, depending on the type of HAB. Causing economic impact also, as there is still insufficient evidence to resolve this problem. Therefore this chapter considers the effects of past, present and future climatic variability on HABs along with impacts of toxins release by them, on marine organism as well as human beings correspondingly, mitigation of HAB with help of suitable biological agents recognized.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 396
Author(s):  
Christina Tsikoti ◽  
Savvas Genitsaris

Anthropogenic marine eutrophication has been recognized as one of the major threats to aquatic ecosystem health. In recent years, eutrophication phenomena, prompted by global warming and population increase, have stimulated the proliferation of potentially harmful algal taxa resulting in the prevalence of frequent and intense harmful algal blooms (HABs) in coastal areas. Numerous coastal areas of the Mediterranean Sea (MS) are under environmental pressures arising from human activities that are driving ecosystem degradation and resulting in the increase of the supply of nutrient inputs. In this review, we aim to present the recent situation regarding the appearance of HABs in Mediterranean coastal areas linked to anthropogenic eutrophication, to highlight the features and particularities of the MS, and to summarize the harmful phytoplankton outbreaks along the length of coastal areas of many localities. Furthermore, we focus on HABs documented in Greek coastal areas according to the causative algal species, the period of occurrence, and the induced damage in human and ecosystem health. The occurrence of eutrophication-induced HAB incidents during the past two decades is emphasized.


Harmful Algae ◽  
2015 ◽  
Vol 49 ◽  
pp. 68-93 ◽  
Author(s):  
Mark L. Wells ◽  
Vera L. Trainer ◽  
Theodore J. Smayda ◽  
Bengt S.O. Karlson ◽  
Charles G. Trick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document