scholarly journals Connectivity between Historical Great Basin Precipitation and Pacific Ocean Variability: A CMIP5 Model Evaluation

2015 ◽  
Vol 28 (15) ◽  
pp. 6096-6112 ◽  
Author(s):  
Kimberly Smith ◽  
Courtenay Strong ◽  
Shih-Yu Wang

Abstract The eastern Great Basin (GB) in the western United States is strongly affected by droughts that influence water management decisions. Precipitation that falls in the GB, particularly in the Great Salt Lake (GSL) basin encompassed by the GB, provides water for millions of people living along the Wasatch Front Range. Western U.S. precipitation is known to be influenced by El Niño–Southern Oscillation (ENSO) as well as the Pacific decadal oscillation (PDO) in the North Pacific. Historical connectivity between GB precipitation and Pacific Ocean sea surface temperatures (SSTs) on interannual to multidecadal time scales is evaluated for 20 models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). While the majority of the models had realistic ENSO and PDO spatial patterns in the SSTs, the simulated influence of these two modes on GB precipitation tended to be too strong for ENSO and too weak for PDO. Few models captured the connectivity at a quasi-decadal period influenced by the transition phase of the Pacific quasi-decadal oscillation (QDO; a recently identified climate mode that influences GB precipitation). Some of the discrepancies appear to stem from models not capturing the observed tendency for the PDO to modulate the sign of the ENSO–GB precipitation teleconnection. Of all of the models, CCSM4 most consistently captured observed connections between Pacific SST variability and GB precipitation on the examined time scales.

2012 ◽  
Vol 25 (5) ◽  
pp. 1711-1721 ◽  
Author(s):  
Shih-Yu Wang ◽  
Robert R. Gillies ◽  
Thomas Reichler

This study investigates the meteorological conditions associated with multidecadal drought cycles as revealed by lake level fluctuation of the Great Salt Lake (GSL). The analysis combined instrumental, proxy, and simulation datasets, including the Twentieth Century Reanalysis version 2, the North American Drought Atlas, and a 2000-yr control simulation of the GFDL Coupled Model, version 2.1 (CM2.1). Statistical evidence from the spectral coherence analysis points to a phase shift amounting to 6–9 yr between the wet–dry cycles in the Great Basin and the warm–cool phases of the interdecadal Pacific oscillation (IPO). Diagnoses of the sea surface temperature and atmospheric circulation anomalies attribute such a phase shift to a distinctive teleconnection wave train that develops during the transition points between the IPO’s warm and cool phases. This teleconnection wave train forms recurrent circulation anomalies centered over the southeastern Gulf of Alaska; this directs moisture flux across the Great Basin and subsequently drives wet–dry conditions over the Great Basin and the GSL watershed. The IPO life cycle therefore modulates local droughts–pluvials in a quarter-phase manner.


2020 ◽  
Vol 33 (13) ◽  
pp. 5547-5564
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Bohua Huang

AbstractBased on observational data, this work examines the multi-time-scale feature of the sea surface temperature (SST) variability averaged in the whole North Atlantic Ocean (to be referred to as NASST), as well as its time-scale-dependent connections with El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). Traditionally, the NASST index is used to characterize the SST trend and multidecadal variability in the North Atlantic. This study found that superimposed on a prominent long-term trend, NASST is nonnegligible at subannual and interannual time scales, compared with that at decadal to multidecadal time scales. Spatially, the interannual variation of NASST is characterized by a horseshoe-like pattern of the SST anomaly (SSTA) in the North Atlantic. It is mainly a lagged response to ENSO through the atmospheric bridge, and NAO plays a secondary role. At the subannual time scale, both ENSO and NAO play a role in generating the fluctuations of NASST and a horseshoe-like pattern in the North Atlantic. Nevertheless, both the ENSO- and NAO-driven variations only explain a small fraction of the variances in both the interannual and subannual time scales. Thus, other factors unrelated to ENSO or NAO may play a more important role. The associated thermodynamical processes are similar at the two time scales; however, the dynamical processes have a significant contribution to the subannual component, but not to the interannual component. Thus, the SSTA averaged in the North Atlantic as a whole varies at different time scales and is associated with different mechanisms.


2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Zhang ◽  
Feng Jiang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann

AbstractThe El Niño-Southern Oscillation (ENSO), the primary driver of year-to-year global climate variability, is known to influence the North Tropical Atlantic (NTA) sea surface temperature (SST), especially during boreal spring season. Focusing on statistical lead-lag relationships, previous studies have proposed that interannual NTA SST variability can also feed back on ENSO in a predictable manner. However, these studies did not properly account for ENSO’s autocorrelation and the fact that the SST in the Atlantic and Pacific, as well as their interaction are seasonally modulated. This can lead to misinterpretations of causality and the spurious identification of Atlantic precursors for ENSO. Revisiting this issue under consideration of seasonality, time-varying ENSO frequency, and greenhouse warming, we demonstrate that the cross-correlation characteristics between NTA SST and ENSO, are consistent with a one-way Pacific to Atlantic forcing, even though the interpretation of lead-lag relationships may suggest otherwise.


2019 ◽  
Vol 16 (33) ◽  
pp. 630-640
Author(s):  
C. M. DÍEZ ◽  
C. J. SOLANO

The atmosphere system is ruled by the interaction of many meteorological parameters, causing a dependency between them, i.e., moisture and temperature, both suitable in front of any anomaly, such as storms, hurricanes, El Niño-Southern Oscillation (ENSO) events. So, understanding perturbations of the variation of moistness along the time may provide an indicator of any oceanographic phenomenon. Annual relative humidity data around the Equatorial line of the Pacific Ocean were processed and analyzed to comprehend the time evolution of each dataset, appreciate anomalies, trends, histograms, and propose a way to predict anomalous episodes such ENSO events, observing abnormality of lag correlation coefficients between every pair of buoys. Datasets were taken from the Tropical Atmosphere Ocean / Triangle Trans-Ocean Network (TAO/TRITON) project, array directed by Pacific Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). All the datasets were processed, and the code was elaborated by the author or adapted from Mathworks Inc. Even occurrences of relative humidity in the east side of the Pacific Ocean seem to oscillate harmonically, while occurrences in the west side, do not, because of the size of their amplitudes of oscillations. This fact can be seen in the histograms that show Peak shapes in the east side of the ocean, and Gaussians in the west; lag correlation functions show that no one pair of buoys synchronize fluctuations, but western buoys are affected in front of ENSO events, especially between 1997-98. Definitely, lag correlations in western buoys are determined to detect ENSO events.


2019 ◽  
Vol 11 (18) ◽  
pp. 4853
Author(s):  
You-Lin Wang ◽  
Yu-Chen Hsu ◽  
Chung-Pan Lee ◽  
Chau-Ron Wu

The Antarctic Circumpolar Current (ACC) plays an important role in the climate as it balances heat energy and water mass between the Pacific and Atlantic Oceans through the Drake Passage. However, because the historical measurements and observations are extremely limited, the decadal and long-term variations of the ACC around the western South Atlantic Ocean are rarely studied. By analyzing reconstructed sea surface temperatures (SSTs) in a 147-year period (1870–2016), previous studies have shown that SST anomalies (SSTAs) around the Antarctic Peninsula and South America had the same phase change as the El Niño Southern Oscillation (ENSO). This study further showed that changes in SSTAs in the regions mentioned above were enlarged when the Pacific Decadal Oscillation (PDO) and the ENSO were in the same warm or cold phase, implying that changes in the SST of higher latitude oceans could be enhanced when the influence of the ENSO is considered along with the PDO.


2014 ◽  
Vol 11 (4) ◽  
pp. 977-993 ◽  
Author(s):  
I. Ruvalcaba Baroni ◽  
R. P. M. Topper ◽  
N. A. G. M. van Helmond ◽  
H. Brinkhuis ◽  
C. P. Slomp

Abstract. The geological record provides evidence for the periodic occurrence of water column anoxia and formation of organic-rich deposits in the North Atlantic Ocean during the mid-Cretaceous (hereafter called the proto-North Atlantic). Both changes in primary productivity and oceanic circulation likely played a role in the development of the low-oxygen conditions. Several studies suggest that an increased input of phosphorus from land initiated oceanic anoxic events (OAEs). Other proposed mechanisms invoke a vigorous upwelling system and an ocean circulation pattern that acted as a trap for nutrients from the Pacific Ocean. Here, we use a detailed biogeochemical box model for the proto-North Atlantic to analyse under what conditions anoxia could have developed during OAE2 (94 Ma). The model explicitly describes the coupled water, carbon, oxygen and phosphorus cycles for the deep basin and continental shelves. In our simulations, we assume the vigorous water circulation from a recent regional ocean model study. Our model results for pre-OAE2 and OAE2 conditions are compared to sediment records of organic carbon and proxies for photic zone euxinia and bottom water redox conditions (e.g. isorenieratane, carbon/phosphorus ratios). Our results show that a strongly elevated input of phosphorus from rivers and the Pacific Ocean relative to pre-OAE2 conditions is a requirement for the widespread development of low oxygen in the proto-North Atlantic during OAE2. Moreover, anoxia in the proto-North Atlantic is shown to be greatly influenced by the oxygen concentration of Pacific bottom waters. In our model, primary productivity increased significantly upon the transition from pre-OAE2 to OAE2 conditions. Our model captures the regional trends in anoxia as deduced from observations, with euxinia spreading to the northern and eastern shelves but with the most intense euxinia occurring along the southern coast. However, anoxia in the central deep basin is difficult to achieve in the model. This suggests that the ocean circulation used in the model may be too vigorous and/or that anoxia in the proto-North Atlantic was less widespread than previously thought.


1843 ◽  
Vol 133 ◽  
pp. 113-143 ◽  

In the present number of these Contributions, I resume the consideration of Captain Sir Edward Belcher’s magnetic observations, of which the first portion, viz. that of the stations on the north-west coast of America and adjacent islands, was discussed in No. II. The return to England of Her Majesty’s ship Sulphur by the route of the Pacific Ocean, and her detention for some months in the China Seas, have enabled Sir Edward Belcher to add magnetic determinations at thirty-two stations to those at the twenty-nine stations previously recorded. In the notice of the earlier observations, a provisional coefficient was employed in the formula for the temperature corrections of the results with the intensity needles, as no experiments had then been made for the determination of their individual co­efficients. As soon therefore as Sir Edward Belcher had completed the observation of the times of vibration of those needles at Woolwich, as the concluding station of the series made with them, Lieut. Riddell, R. A. undertook the determination of their several coefficients, which was performed in the manner and with the results described in the subjoined memorandum.


Sign in / Sign up

Export Citation Format

Share Document