scholarly journals Otolith increment width-based chronologies disclose temperature and density-dependent effects on demersal fish growth

2019 ◽  
Vol 77 (2) ◽  
pp. 633-644 ◽  
Author(s):  
Ana Rita Vieira ◽  
Sandra Dores ◽  
Manuela Azevedo ◽  
Susanne E Tanner

Abstract Climate change and fishing are drastically impacting marine ecosystems. Comprehending the biological consequences of these effects on commercially exploited fish is especially challenging. Here, we developed a 43-year otolith increment width-based growth chronology for one of the most important commercially exploited fish species in the Northeast Atlantic (European hake, Merluccius merluccius). Increasingly complex linear mixed-effects models were used to partition growth variation into intrinsic (age, sex, and age-at-capture) and extrinsic (environmental and biotic variables) factors, allowing age interaction with extrinsic variables to assess age-dependent responses in growth. Our results provided strong evidence that European hake growth is impacted by ocean temperature, namely sea surface temperature and temperature at depth, and species abundance (recruitment), with different responses depending on fish age. We found evidence that increasing ocean temperature could be highly detrimental for species growth especially during the first years of life. We provided insights into the effects of environmental and biotic factors on species growth variation. Such information is key to recognize the sensitivity of European hake growth to climate change, which may contribute to sustainable management policies for this valuable resource.

1984 ◽  
Vol 41 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Eric C. Volk ◽  
Robert C. Wissmar ◽  
Charles A. Simenstad ◽  
Douglas M. Eggers

Effects of different prey taxa and daily ration levels on fish growth and the relationship between fish growth rate and mean otolith increment width were investigated for juvenile chum salmon (Oncorhynchus keta) in saltwater aquaria. Growth was positively correlated with ration, and food conversion efficiency was much higher for fish fed the harpacticoid copepod, Tigriopus californicus, than either the calanoid copepod, Pseudocalanus minutas, or the gammarid amphipod, Paramoera mohri. Otolith increments were produced daily for at least the first 160 d after hatching and there was a direct relationship between mean daily otolith increment width and fish growth rate. These results illustrate the possibility that otolith microstructure recapitulates juvenile chum growth histories during estuarine residence.


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2013 ◽  
Vol 3 (12) ◽  
pp. 1055-1061 ◽  
Author(s):  
Alison Johnston ◽  
Malcolm Ausden ◽  
Andrew M. Dodd ◽  
Richard B. Bradbury ◽  
Dan E. Chamberlain ◽  
...  

Author(s):  
Laura Härkönen ◽  
Pauliina Louhi ◽  
Riina Huusko ◽  
Ari Huusko

Understanding the dynamic nature of individual growth in stream-dwelling salmonids may help forecast consequences of climate change on northern fish populations. Here, we performed an experimental capture-mark-recapture study in Atlantic salmon to quantify factors influencing wintertime growth variation among juveniles under different scenarios for ice cover reduction. We applied multiple imputation to simulate missing size observations for unrecaptured fish, and to account for individual-level variation in growth rates. The salmon parr exhibited substantial body length shrinkage in early winter, suppressed growth through mid-winter, and increasing growth rates in late winter and particularly in spring. Unexpectedly, the presence of ice cover had no direct effects on wintertime growth. Instead, our results implied increasing energetic costs with reducing ice cover: individuals exposed to absent or shortened ice-covered period gained mass at a lowered rate in spring whereas the present, long ice-covered period was followed by rapid growth. This study emphasizes natural resilience of Atlantic salmon to wintertime environmental variation which may help the species to cope with the reductions in ice cover duration due to climate change.


1998 ◽  
Vol 46 (2) ◽  
pp. 93-109 ◽  
Author(s):  
Gecely R. A. Rocha ◽  
Carmen L. D. B. Rossi-Wongtschowski

Fluctuations in the distribution and abundance of demersal fishes collected by otter trawl on the continental shelf of Ubatuba were examined over a two-year sampling period, in an area up to 50 m depth. A total of 111 species were collected. Seasonal and annual fluctuations in species abundance were related to differences in the distribution of Coastal Water and South Atlantic Central Water masses. The demersal fish fauna in the area was divided into three ecologically distinct communities: Tropical Sciaenid, Subtropical Sciaenid, and Gerreid-Haemulid. The most important one is the Tropical Sciaenid Community, characterized by Ctenosciaena gracilicirrhus, Paralonchurus brasiliensis, and Cynoscion jamaicensis.


2021 ◽  
Vol 121 ◽  
pp. 106976
Author(s):  
Minrui Huang ◽  
Liuyong Ding ◽  
Jun Wang ◽  
Chengzhi Ding ◽  
Juan Tao

2000 ◽  
Vol 51 (7) ◽  
pp. 689 ◽  
Author(s):  
Brian F. Cohen ◽  
David R. Currie ◽  
Matthew A. McArthur

Epibenthic community structure in Port Phillip Bay was examined from quantitative diver samples collected at 30 depth-stratified stations during 1998. Analysis of variance showed a strong trend of decreasing epibenthic abundance, biomass and species diversity with depth. Reductions in these three parameters were most pronounced over shallow inshore waters and could be attributed largely to decreases in the abundance of the heavy, mat-forming ascidian Pyura stolonifera with depth. Four epifaunal community groupings, closely reflecting differences in sediment and habitat type within the bay, were identified from ordinations of species abundance and biomass data. The four epifaunal groupings also closely matched distributional patterns observed in other studies in both demersal fish and infaunal communities. Epifaunal communities in the bay were dominated by filter-feeding organisms which accounted for nearly 95% of the total species abundance and 98% of the total species biomass. Seven of the 63 epibenthic organisms collected during the survey are exotic introductions to the bay (Sabella spallanzanii, Ascidiella aspersa, Styela clava, Styela plicata, Ciona intestinalis, Pyromaia tuberculata and Asterias amurensis). As many of these species are widespread and abundant (35% of all individuals), their effects on the ecology of Port Phillip Bay are likely to be significant.


Sign in / Sign up

Export Citation Format

Share Document