scholarly journals Detachment in capillary adhesion: the relative roles of tilting and separation

2020 ◽  
Vol 85 (5) ◽  
pp. 673-702
Author(s):  
Matthew D Butler ◽  
Dominic Vella

Abstract We study the dynamics of detachment in 2D capillary adhesion by considering a plate that is initially attached to a flat, rigid substrate via the surface tension of a bridging liquid droplet. In particular, we focus on the effect of allowing the plate to tilt freely during its subsequent motion. A linear stability analysis shows that small perturbations from equilibrium decouple into two modes: one in which the plate separates from the substrate, remaining parallel, and another in which it tilts, simultaneously causing the bridging droplet to migrate. If the initial tilt perturbation is of a similar magnitude to (or bigger than) the separation perturbation, then the presence of this second tilting mode can significantly alter the dynamics. Indeed, this tilting mechanism changes the ultimate fate of the plate: depending on the size of the plate and the initial perturbation, the plate may anomalously detach. We discuss this observation in relation to previous experiments on a 3D system that showed a qualitatively similar anomalous detachment.

2005 ◽  
Vol 19 (28n29) ◽  
pp. 1547-1550
Author(s):  
YOULIANG CHENG ◽  
XIN LI ◽  
ZHONGYAO FAN ◽  
BOFEN YING

Representing surface tension by nonlinear relationship on temperature, the boundary value problem of linear stability differential equation on small perturbation is derived. Under the condition of the isothermal wall the effects of nonlinear surface tension on stability of heat transfer in saturated liquid film of different liquid low boiling point gases are investigated as wall temperature is varied.


2006 ◽  
Vol 2 (S235) ◽  
pp. 143-143
Author(s):  
Eduard Vorobyov ◽  
Christian Theis

The majority of normal disk galaxies are characterized by non-axisymmetric structures like spirals or bars. These structural elements have been widely discussed in the literature as a result of gravitational instabilities which are connected to growing density waves or global instabilities of disks. A first insight into the properties of galactic discs was provided by linear stability analysis. However, a disadvantage of linear stability analysis remained its restriction to small perturbations, both in amplitude and wavelength. Thus, numerical simulations, especially hydrodynamical and stellar-hydrodynamical simulations became a primary tool for the analysis of galactic evolution.


Author(s):  
Shuai Meng ◽  
Qian Wang ◽  
Rui Yang

The phenomenon of impaction between liquid droplets and solid particles is involved in many scientific problems and engineering applications, such as impaction between sprayed droplet and solid particles in limestone injection desulfurization system and the collision between a droplet of the liquid to be granulated and a seed particle in fluidized bed spray granulation process. There are a lot of factors affected this phenomenon: droplet and particle size, momentum of both liquid droplet and solid particles, materials, surface conditions of the solid particles and so on. However the experimental or numerical researches have been done mostly pay attention to Specific application or process, so the impaction phenomenon has not been through studied, for example how different factors affected the impaction process with its effect on different applications. This paper focuses on the basic issue of interaction between droplet and solid particles. Three main factors were considered: ratio of diameter between the droplet and solid particle, relative velocity and the surface tension (including the contact angle between droplet and solid particle). All the study is based on simulation using SPH (smoothed particle hydrodynamics) method, and the surface tension is simulated by particle-particle interaction.


Soft Matter ◽  
2021 ◽  
Author(s):  
S. I. Tamim ◽  
J. B. Bostwick

A soft cylindrical interface endowed with surface tension can be unstable to wavy undulations. The most unstable wavelength depends upon the viscoelastic properties of the material and is determined by a dynamic stability analysis.


Author(s):  
Jhy-Cherng Tsai ◽  
Yong-Sung Hsu

Microlens and its mold fabricated by thermal reflow using photoresist have been widely used for forming patterns in different scales. When the photoresist solidifies from melting condition, for example by the reflow process, its profile is formed based on the balance between surface tension and gravity. This research is aimed to investigate the influence of surface tension and gravity on the profile of microlens in thermal reflow process. Theoretical analysis based on the interaction between surface tension and gravity of liquid droplet is first investigated. The result showed that the height to diameter ratio (h/D), or the sag ratio, of the liquid droplet is affected by the Bond number (Bo), a number defined as the ratio of gravity to surface tension. The sag ratio is not sensitive to Bo when Bo is small but the ratio decreases as Bo increases if Bo is over the critical number. Based on the analysis, the critical number for the AZ4620 photoresist on a silicon substrate is 1, corresponding to the critical radius of droplet R = 2,500μm. When the size of the droplet is less then the critical size, the profile is mainly controlled by the surface tension and thus the sag ratio is about the same regardless the size. The profile, in contrast, is highly affected by the gravity if the size of the droplet is larger then the critical size. The sag ratio decreases exponentially with respect to Bo in this case. Experiments are also designed and conducted to verify the analysis. Experimental result showed that the sag ratio of the photoresist reduces to 0.065 from 0.095 when Bo increases from 0.0048 to 0.192. The results showed that the trend is consistent to the theoretical model.


2018 ◽  
Vol 123 (2) ◽  
pp. 542-550 ◽  
Author(s):  
Daichi Sakurai ◽  
Soumyadeep Paul ◽  
Wei-Lun Hsu ◽  
Hirofumi Daiguji ◽  
Fumio Takemura

2018 ◽  
Vol 843 ◽  
pp. 575-600 ◽  
Author(s):  
Jean-Philippe Matas ◽  
Antoine Delon ◽  
Alain Cartellier

We study the destabilization of a round liquid jet by a fast annular gas stream. We measure the frequency of the shear instability waves for several geometries and air/water velocities. We then carry out a linear stability analysis, and show that there are three competing mechanisms for the destabilization: a convective instability, an absolute instability driven by surface tension and an absolute instability driven by confinement. We compare the predictions of this analysis with experimental results, and propose scaling laws for wave frequency in each regime. We finally introduce criteria to predict the boundaries between these three regimes.


Author(s):  
Lijing Yang ◽  
Milad Rakhsha ◽  
Dan Negrut

Abstract We compare two surface tension models to solve two-phase fluid interaction problems in the context of the mesh-free Smoothed Particles Hydrodynamics (SPH) method. The Continuum Surface Force (CSF) model (later extended to Continuum Surface Stress, CSS), originally derived from grid-based numerical methods, requires an accurate estimation of the interface curvature to express the surface tension. Unlike CSF, the Inter-Particle Force (IPF) model is more robust in this regard as it draws on a molecular dynamics foundation by considering how the pairwise interaction forces between particles within a cutoff distance act in relation to producing the surface tension. Herein, we rely on second-order consistent gradient and Laplacian operators to improve the accuracy of SPH formulations as well as on a particle shifting technique to “disorder” particles from non-differentiable interface geometries. A 3D liquid droplet deformation test is used to compare CSF and IPF in terms of their pressure field and kinetic energy dissipation accuracy.


Sign in / Sign up

Export Citation Format

Share Document