scholarly journals Spatial localization beyond steady states in the neighbourhood of the Takens–Bogdanov bifurcation

Author(s):  
Haifaa Alrihieli ◽  
Alastair M Rucklidge ◽  
Priya Subramanian

Abstract Double-zero eigenvalues at a Takens–Bogdanov (TB) bifurcation occur in many physical systems such as double-diffusive convection, binary convection and magnetoconvection. Analysis of the associated normal form, in 1D with periodic boundary condition, shows the existence of steady patterns, standing waves, modulated waves (MW) and travelling waves, and describes the transitions and bifurcations between these states. Values of coefficients of the terms in the normal form classify all possible different bifurcation scenarios in the neighbourhood of the TB bifurcation (Dangelmayr, G. & Knobloch, E. (1987) The Takens–Bogdanov bifurcation with O(2)-symmetry. Phil. Trans. R. Soc. Lond. A, 322, 243-279). In this work we develop a new and simple pattern-forming partial differential equation (PDE) model, based on the Swift–Hohenberg equation, adapted to have the TB normal form at onset. This model allows us to explore the dynamics in a wide range of bifurcation scenarios, including in domains much wider than the lengthscale of the pattern. We identify two bifurcation scenarios in which coexistence between different types of solutions is indicated from the analysis of the normal form equation. In these scenarios, we look for spatially localized solutions by examining pattern formation in wide domains. We are able to recover two types of localized states, that of a localized steady state (LSS) in the background of the trivial state (TS) and that of a spatially localized travelling wave (LTW) in the background of the TS, which have previously been observed in other systems. Additionally, we identify two new types of spatially localized states: that of a LSS in a MW background and that of a LTW in a steady state (SS) background. The PDE model is easy to solve numerically in large domains and so will allow further investigation of pattern formation with a TB bifurcation in one or more dimensions and the exploration of a range of background and foreground pattern combinations beyond SSs.

2007 ◽  
Vol 17 (02) ◽  
pp. 509-520 ◽  
Author(s):  
ANTONIO PALACIOS ◽  
PETER BLOMGREN ◽  
SCOTT GASNER

We use symmetry-based arguments to derive normal form equations for studying the temporal behavior of a particular spatio-temporal dynamic cellular pattern, called "hopping" state, which we have recently discovered in computer simulations of a generic example of an extended, deterministic, pattern-forming system in a circular domain. Hopping states are characterized by cellular structures that sequentially make abrupt changes in their angular positions while they rotate, collectively, about the center of the circular domain. A mode decomposition analysis suggests that these patterns are created from the interaction of three steady-state modes. A bifurcation analysis of associated normal form equations, which govern the time-evolution of the steady-state modes, helps us quantify the complexity of hopping patterns. Conditions for their existence and their stability are also derived from the bifurcation analysis. The overall ideas and methods are generic, so they can be readily applied to study other type of spatio-temporal pattern-forming dynamical systems with similar symmetry properties.


Author(s):  
J.H.P Dawes ◽  
M.R.E Proctor

We investigate the dynamics of pattern-forming systems in large domains near a codimension-two point corresponding to a ‘strong spatial resonance’ where competing instabilities with wavenumbers in the ratio 1 : 2 or 1 : 3 occur. We supplement the standard amplitude equations for such a mode interaction with Ginzburg–Landau-type modulational terms, appropriate to pattern formation in a large domain. In cases where the coefficients of these new diffusive terms differ substantially from each other, we show that spatially periodic solutions found near onset may be unstable to two long-wavelength modulational instabilities. Moreover, these instabilities generically occur near the codimension-two point only in the 1 : 2 and 1 : 3 cases, and not when weaker spatial resonances arise. The first instability is ‘amplitude-driven’ and is the analogue of the well-known Turing instability of reaction–diffusion systems. The second is a phase instability for which the subsequent nonlinear development is described, at leading order, by the Cahn–Hilliard equation. The normal forms for strong spatial resonances are also well known to permit uniformly travelling wave solutions. We also show that these travelling waves may be similarly unstable.


2009 ◽  
Vol 626 ◽  
pp. 415-448 ◽  
Author(s):  
S. A. KAS-DANOUCHE ◽  
D. T. PAPAGEORGIOU ◽  
M. SIEGEL

The nonlinear stability of two-phase core-annular flow in a cylindrical pipe is studied. A constant pressure gradient drives the flow of two immiscible liquids of different viscosities and equal densities, and surface tension acts at the interface separating the phases. Insoluble surfactants are included, and we assess their effect on the flow stability and ensuing spatio-temporal dynamics. We achieve this by developing an asymptotic analysis in the limit of a thin annular layer – which is usually the relevant regime in applications – to derive a coupled system of nonlinear evolution equations that govern the dynamics of the interface and the local surfactant concentration on it. In the absence of surfactants the system reduces to the Kuramoto–Sivashinsky (KS) equation, and its modifications due to viscosity stratification (present when the phases have unequal viscosities) are derived elsewhere. We report on extensive numerical experiments to evaluate the effect of surfactants on KS dynamics (including chaotic states, for example), in both the absence and the presence of viscosity stratification. We find that chaos is suppressed in the absence of viscosity differences and that the new flow consists of successive windows (in parameter space) of steady-state travelling waves separated by time-periodic attractors. The intricate structure of the travelling pulses is also explained physically. When viscosity stratification is present we observe a transition from time-periodic dynamics, for instance, to steady-state travelling wave pulses of increasing amplitudes and speeds. Numerical evidence is presented that indicates that the transition occurs through a reverse Feigenbaum cascade in phase space.


2018 ◽  
Vol 115 (26) ◽  
pp. 6572-6577 ◽  
Author(s):  
David Karig ◽  
K. Michael Martini ◽  
Ting Lu ◽  
Nicholas A. DeLateur ◽  
Nigel Goldenfeld ◽  
...  

The origin of biological morphology and form is one of the deepest problems in science, underlying our understanding of development and the functioning of living systems. In 1952, Alan Turing showed that chemical morphogenesis could arise from a linear instability of a spatially uniform state, giving rise to periodic pattern formation in reaction–diffusion systems but only those with a rapidly diffusing inhibitor and a slowly diffusing activator. These conditions are disappointingly hard to achieve in nature, and the role of Turing instabilities in biological pattern formation has been called into question. Recently, the theory was extended to include noisy activator–inhibitor birth and death processes. Surprisingly, this stochastic Turing theory predicts the existence of patterns over a wide range of parameters, in particular with no severe requirement on the ratio of activator–inhibitor diffusion coefficients. To explore whether this mechanism is viable in practice, we have genetically engineered a synthetic bacterial population in which the signaling molecules form a stochastic activator–inhibitor system. The synthetic pattern-forming gene circuit destabilizes an initially homogenous lawn of genetically engineered bacteria, producing disordered patterns with tunable features on a spatial scale much larger than that of a single cell. Spatial correlations of the experimental patterns agree quantitatively with the signature predicted by theory. These results show that Turing-type pattern-forming mechanisms, if driven by stochasticity, can potentially underlie a broad range of biological patterns. These findings provide the groundwork for a unified picture of biological morphogenesis, arising from a combination of stochastic gene expression and dynamical instabilities.


2000 ◽  
Vol 2 (3) ◽  
pp. 155-174 ◽  
Author(s):  
J. P. Ward ◽  
J. R. King

Earlier mathematical models of the authors which describe avascular tumour growth are extended to incorporate the process of cell shedding, a feature known to affect the growth of multicell spheroids. A continuum of live cells is assumed within which, depending on the concentration of a generic nutrient, movement (described by a velocity field) occurs due to volume changes caused by cell birth and death. The necrotic material is assumed to contain a mixture of basic cellular material (assumed necessary for creating new cells) and a non-utilisable material which may inhibit mitosis. The rate of cell shedding is taken to be proportional to the mitotic rate, with constant of proportionality θ. Numerical solutions of the resulting system of partial differential equations indicate that, depending on θ and the initial conditions, the solution may either tend to the trivial state in finite time (by which we mean complete death of the tumour), or to one of two non-trivial states, namely a steady-state (indicating growth saturation) or a travelling wave (indicating continual linear growth). These long time outcomes are explored by deriving the travelling wave and steady-state limits of the model. Numerical solutions demonstrate that there are two branches of solutions, which we have termed the ′Major′ and ′Minor′ branches, consisting of both travelling waves and steady-states. The behaviour of the solutions along each branch is discussed, with those of the Major branch expected to be stable. Beyond some critical θ,where the Major and Minor branches merge, the spheroid ultimately vanishes whatever the initial tumour size due to the effects of cell shedding being too strong for it to survive. The regions of existence of the two long time outcomes are investigated in parameter space, cell shedding being shown to expand significantly the parameter ranges within which growth saturation occurs.


2019 ◽  
Vol 26 (6) ◽  
pp. 435-448
Author(s):  
Priyanka Biswas ◽  
Dillip K. Sahu ◽  
Kalyanasis Sahu ◽  
Rajat Banerjee

Background: Aminoacyl-tRNA synthetases play an important role in catalyzing the first step in protein synthesis by attaching the appropriate amino acid to its cognate tRNA which then transported to the growing polypeptide chain. Asparaginyl-tRNA Synthetase (AsnRS) from Brugia malayi, Leishmania major, Thermus thermophilus, Trypanosoma brucei have been shown to play an important role in survival and pathogenesis. Entamoeba histolytica (Ehis) is an anaerobic eukaryotic pathogen that infects the large intestines of humans. It is a major cause of dysentery and has the potential to cause life-threatening abscesses in the liver and other organs making it the second leading cause of parasitic death after malaria. Ehis-AsnRS has not been studied in detail, except the crystal structure determined at 3 Å resolution showing that it is primarily α-helical and dimeric. It is a homodimer, with each 52 kDa monomer consisting of 451 amino acids. It has a relatively short N-terminal as compared to its human and yeast counterparts. Objective: Our study focusses to understand certain structural characteristics of Ehis-AsnRS using biophysical tools to decipher the thermodynamics of unfolding and its binding properties. Methods: Ehis-AsnRS was cloned and expressed in E. coli BL21DE3 cells. Protein purification was performed using Ni-NTA affinity chromatography, following which the protein was used for biophysical studies. Various techniques such as steady-state fluorescence, quenching, circular dichroism, differential scanning fluorimetry, isothermal calorimetry and fluorescence lifetime studies were employed for the conformational characterization of Ehis-AsnRS. Protein concentration for far-UV and near-UV circular dichroism experiments was 8 µM and 20 µM respectively, while 4 µM protein was used for the rest of the experiments. Results: The present study revealed that Ehis-AsnRS undergoes unfolding when subjected to increasing concentration of GdnHCl and the process is reversible. With increasing temperature, it retains its structural compactness up to 45ºC before it unfolds. Steady-state fluorescence, circular dichroism and hydrophobic dye binding experiments cumulatively suggest that Ehis-AsnRS undergoes a two-state transition during unfolding. Shifting of the transition mid-point with increasing protein concentration further illustrate that dissociation and unfolding processes are coupled indicating the absence of any detectable folded monomer. Conclusion: This article indicates that GdnHCl induced denaturation of Ehis-AsnRS is a two – state process and does not involve any intermediate; unfolding occurs directly from native dimer to unfolded monomer. The solvent exposure of the tryptophan residues is biphasic, indicating selective quenching. Ehis-AsnRS also exhibits a structural as well as functional stability over a wide range of pH.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3854
Author(s):  
Salvatore Musumeci ◽  
Luigi Solimene ◽  
Carlo Stefano Ragusa

In this paper, we propose a method for the identification of the differential inductance of saturable ferrite inductors adopted in DC–DC converters, considering the influence of the operating temperature. The inductor temperature rise is caused mainly by its losses, neglecting the heating contribution by the other components forming the converter layout. When the ohmic losses caused by the average current represent the principal portion of the inductor power losses, the steady-state temperature of the component can be related to the average current value. Under this assumption, usual for saturable inductors in DC–DC converters, the presented experimental setup and characterization method allow identifying a DC thermal steady-state differential inductance profile of a ferrite inductor. The curve is obtained from experimental measurements of the inductor voltage and current waveforms, at different average current values, that lead the component to operate from the linear region of the magnetization curve up to the saturation. The obtained inductance profile can be adopted to simulate the current waveform of a saturable inductor in a DC–DC converter, providing accurate results under a wide range of switching frequency, input voltage, duty cycle, and output current values.


Author(s):  
Yan Chen ◽  
Ward Whitt

In order to understand queueing performance given only partial information about the model, we propose determining intervals of likely values of performance measures given that limited information. We illustrate this approach for the mean steady-state waiting time in the $GI/GI/K$ queue. We start by specifying the first two moments of the interarrival-time and service-time distributions, and then consider additional information about these underlying distributions, in particular, a third moment and a Laplace transform value. As a theoretical basis, we apply extremal models yielding tight upper and lower bounds on the asymptotic decay rate of the steady-state waiting-time tail probability. We illustrate by constructing the theoretically justified intervals of values for the decay rate and the associated heuristically determined interval of values for the mean waiting times. Without extra information, the extremal models involve two-point distributions, which yield a wide range for the mean. Adding constraints on the third moment and a transform value produces three-point extremal distributions, which significantly reduce the range, producing practical levels of accuracy.


2020 ◽  
Vol 499 (4) ◽  
pp. 4605-4612
Author(s):  
T Giang Nguyen ◽  
Nicolas B Cowan ◽  
Agnibha Banerjee ◽  
John E Moores

ABSTRACT Transit searches have uncovered Earth-size planets orbiting so close to their host star that their surface should be molten, so-called lava planets. We present idealized simulations of the atmosphere of lava planet K2-141b and calculate the return flow of material via circulation in the magma ocean. We then compare how pure Na, SiO, or SiO2 atmospheres would impact future observations. The more volatile Na atmosphere is thickest followed by SiO and SiO2, as expected. Despite its low vapour pressure, we find that a SiO2 atmosphere is easier to observe via transit spectroscopy due to its greater scale height near the day–night terminator and the planetary radial velocity and acceleration are very high, facilitating high dispersion spectroscopy. The special geometry that arises from very small orbits allows for a wide range of limb observations for K2-141b. After determining the magma ocean depth, we infer that the ocean circulation required for SiO steady-state flow is only 10−4 m s−1, while the equivalent return flow for Na is several orders of magnitude greater. This suggests that a steady-state Na atmosphere cannot be sustained and that the surface will evolve over time.


Sign in / Sign up

Export Citation Format

Share Document