scholarly journals Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association

1999 ◽  
Vol 11 (12) ◽  
pp. 2043-2052 ◽  
Author(s):  
Kazuhito Toyo-oka ◽  
Yumi Yashiro-Ohtani ◽  
Cheung-Seog Park ◽  
Xu-Guang Tai ◽  
Kensuke Miyake ◽  
...  
2015 ◽  
Vol 99 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Xavier Rovira-Clavé ◽  
Maria Angulo-Ibáñez ◽  
Cathy Tournier ◽  
Manuel Reina ◽  
Enric Espel

Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2899-2907 ◽  
Author(s):  
Duncan Howie ◽  
Susumo Okamoto ◽  
Svend Rietdijk ◽  
Kareem Clarke ◽  
Ninghai Wang ◽  
...  

CD150 (signaling lymphocyte activation molecule [SLAM]) is a self-ligand cell surface glycoprotein expressed on T cells, B cells, macrophages, and dendritic cells. To further explore the role of CD150 signaling in costimulation and TH1 priming we have generated a panel of rat antimouse CD150 monoclonal antibodies. CD150 cell surface expression is up-regulated with rapid kinetics in activated T cells and lipopolysaccharide/interferon γ (IFN-γ)–activated macrophages. Anti-CD150 triggering induces strong costimulation of T cells triggered through CD3. DNA synthesis of murine T cells induced by anti-CD150 is not dependent on SLAM-associated protein (SAP, SH2D1A), because anti-CD150 induces similar levels of DNA synthesis in SAP−/− T cells. Antibodies to CD150 also enhance IFN-γ production both in wild-type and SAP−/− T cells during primary stimulation. The level of IFN-γ production is higher in SAP−/− T cells than in wild-type T cells. Anti-CD150 antibodies also synergize with interleukin 12 (IL-12) treatment in up-regulation of IL-12 receptor β2 mRNA during TH1 priming, and inhibit primary TH2 polarization in an IFN-γ–dependent fashion. Cross-linking CD150 on CD4 T cells induces rapid serine phosphorylation of Akt/PKB. We speculate that this is an important pathway contributing to CD150-mediated T-cell proliferation.


1985 ◽  
pp. 273-278
Author(s):  
P. C. L. Beverley ◽  
J. P. Revillard

Author(s):  
Lakshmi Balagopalan ◽  
Kumarkrishna Raychaudhuri ◽  
Lawrence E. Samelson

When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.


1981 ◽  
Vol 153 (3) ◽  
pp. 595-604 ◽  
Author(s):  
D P Dialynas ◽  
M R Loken ◽  
A L Glasebrook ◽  
F W Fitch

To investigate the role of Lyt-2 and Thy-1 in cytolysis, we have generated, by ethyl methanesulfonate mutagenesis and selection, variants of the cloned cytolytic T lymphocyte line L3 that specifically lack either Lyt-2 or Thy-1. An analysis of these variants indicates that neither Lyt-2 nor Lyt-3 is responsible for the lethal hit, but suggests that Lyt-2 and/or Lyt-3 are required for an antigen receptor functional in cytolysis. The data also suggest that the expression of Lyt-3 on the cell surface is not independent of the expression of Lyt-2. Finally the data indicate the Thy-1 plays no role in cytolysis.


Sign in / Sign up

Export Citation Format

Share Document