scholarly journals TGF-  type I receptor kinase inhibitor down-regulates rheumatoid synoviocytes and prevents the arthritis induced by type II collagen antibody

2006 ◽  
Vol 19 (2) ◽  
pp. 117-126 ◽  
Author(s):  
M. Sakuma ◽  
K. Hatsushika ◽  
K. Koyama ◽  
R. Katoh ◽  
T. Ando ◽  
...  
Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 146 (3) ◽  
pp. 857-868 ◽  
Author(s):  
D E Trentham ◽  
A S Townes ◽  
A H Kang

We have found that intradermal injection of native type II collagen extracted from human, chick or rat cartilage induces an inflammatory arthritis in approximately 40% of rats of several strains whether complete Freund's adjuvant or incomplete Freund's adjuvant is used. Type I or III collagen extracted from skin, cartilage proteoglycans and alpha1(II) chains were incapable of eliciting arthritis, as was type II collagen injected without adjuvant. The disease is a chronic proliferative synovitis, resembling adjuvant arthritis in rats and rheumatoid arthritis in humans. Native type II co-lagen modified by limited pepsin digestion still produces arthritis, suggesting that type-specific determinants residing in the helical region of the molecule are responsible for the induction of disease. Since homologous type II collagen emulsified in oil without bacterial preparations regularly causes the disease, this new animal model of arthritis represents a unique example of experimentally-inducible autoimmunity to a tissue component.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 111-118 ◽  
Author(s):  
C.J. Devlin ◽  
P.M. Brickell ◽  
E.R. Taylor ◽  
A. Hornbruch ◽  
R.K. Craig ◽  
...  

During limb development, type I collagen disappears from the region where cartilage develops and synthesis of type II collagen, which is characteristic of cartilage, begins. In situ hybridization using antisense RNA probes was used to investigate the spatial localization of type I and type II collagen mRNAs. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen synthesis, suggesting control at the level of transcription and mRNA accumulation. In contrast, the pattern of mRNA for type I collagen remained more or less uniform and did not correspond with the synthesis of the protein, suggesting control primarily at the level of translation or of RNA processing.


2020 ◽  
Author(s):  
Tianyu Han ◽  
Peiwen Song ◽  
Xiang Xia ◽  
Ying Wang ◽  
Huang Fang ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) are a promising therapy for spinal cord injury (SCI) as they can provide a favorable environment for the regrowth of neurons and axons by inhibiting receptor-regulated Smads (R-Smads) in endogenous neural stem cells (NSCs). However, their mechanism of action and effect on the expression of inhibitory Smads (I-Smads) remains unclear.Method: Conditioned medium (CM) was collected from bone marrow MSCs (BMSCs) isolated from rats with SCIs, and its effect on the regulation of Smad 6 expression was tested in vitro (in NSCs) and in vivo (SCI rats). Western blot analysis and immunohistochemistry staining were used to investigate the proportion of neurons and astrocytes in vitro and in vivo. BBB scores were used to assess the neurological outcome of SCI rats at different time points.Results: BMSC-CM could upregulate Smad 6 expression in vitro. BMSC-CM-induced upregulation was suppressed by pre-treatment with the TGF-β type I receptor kinase inhibitor SB431542. BMSC-CM was able to promote the differentiation of NSCs to neurons; Smad 6 knockdown in NSCs partly weakened this effect on neural differentiation. In vivo, Smad 6 expression in the later phase of injury was closely associated with BMSC-CM treatment. Conclusion: BMSC-CM can upregulate Smad 6 expression by the secretion of TGF-β. It promotes the differentiation of NSCs into neurons, partly through upregulation of Smad 6.


Author(s):  
Stefan Nehrer ◽  
Howard A. Breinan ◽  
Arun Ramappa ◽  
Sonya Shortkroff ◽  
Gretchen Young ◽  
...  
Keyword(s):  
Type I ◽  

Sign in / Sign up

Export Citation Format

Share Document