scholarly journals The Aerodynamics and Power Requirements of Forward Flapping Flight in the Mango Stem Borer Beetle (Batocera rufomaculata)

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Tomer Urca ◽  
Anup Kumar Debnath ◽  
Jean Stefanini ◽  
Roi Gurka ◽  
Gal Ribak

Synopsis The need for long dispersal flights can drive selection for behavioral, physiological, and biomechanical mechanisms to reduce the energy spent flying. However, some energy loss during the transfer of momentum from the wing to the fluid is inevitable, and inherent to the fluid–wing interaction. Here, we analyzed these losses during the forward flight of the mango stem borer (Batocera rufomaculata). This relatively large beetle can disperse substantial distances in search of new host trees, and laboratory experiments have demonstrated continuous tethered flights that can last for up to an hour. We flew the beetles tethered in a wind tunnel and used high-speed videography to estimate the aerodynamic power from their flapping kinematics and particle image velocimetry (PIV) to evaluate drag and kinetic energy from their unsteady wakes. To account for tethering effects, we measured the forces applied by the beetles on the tether arm holding them in place. The drag of the flying beetle over the flapping cycle, estimated from the flow fields in the unsteady wake, showed good agreement with direct measurement of mean horizontal force. Both measurements showed that total drag during flight is ∼5-fold higher than the parasite drag on the body. The aerodynamic power estimated from both the motion of the wings, using a quasi-steady blade-element model, and the kinetic energy in the wake, gave mean values of flight-muscle mass-specific power of 87 and 65 W kg muscle−1, respectively. A comparison of the two values suggests that ∼25% of the energy is lost within the fluid due to turbulence and heat. The muscle mass-specific power found here is low relative to the maximal power output reported for insect flight muscles. This can be attributed to reduce weight support during tethered flight or to operation at submaximal output that may ensure a supply of metabolic substrates to the flight muscles, thus delaying their fatigue during long-distance flights.

High-speed photographic techniques have been used to investigate the sympathetic detonation of solid explosives by shocks propagated across air gaps and solid barriers. It has been observed that initiation takes place within the body of the receptor stick, rather than at the surface, if the shock pressure is appreciably less than the detonation pressure. The depth in the receptor at which initiation occurs depends systematically upon the pressure of the incident shock ; the lower the pressure the deeper the point of initiation. Detonation always occurs at the shock front, but, under the conditions of the experiments completed thus far, does not propagate backward into the preshocked explosive. The propagation velocity of the detonation wave in the receptor is, at least initially, greater than that observed under ordinary conditions. Studies of initiation by impact have shown many points of similarity. Initiation takes place within the body of the target explosive block, at a point ahead of the striking projectile, except at very high velocities of impact. The depth in the explosive and the distance ahead of the projectile at which initiation occurs depend mainly upon the velocity of the projectile and upon the shape of its front. In agreement with previous work, it has been shown that the kinetic energy of the impacting projectile is not a basic parameter in determining the probability of initiation or the conditions under which it occurs.


1997 ◽  
Vol 200 (13) ◽  
pp. 1919-1929 ◽  
Author(s):  
R Kram ◽  
B Wong ◽  
R J Full

We tested the hypothesis that fast-running hexapeds must generate high levels of kinetic energy to cycle their limbs rapidly compared with bipeds and quadrupeds. We used high-speed video analysis to determine the three-dimensional movements of the limbs and bodies of cockroaches (Blaberus discoidalis) running on a motorized treadmill at 21 cm s-1 using an alternating tripod gait. We combined these kinematic data with morphological data to calculate the mechanical energy produced to move the limbs relative to the overall center of mass and the mechanical energy generated to rotate the body (head + thorax + abdomen) about the overall center of mass. The kinetic energy involved in moving the limbs was 8 microJ stride-1 (a power output of 21 mW kg-1, which was only approximately 13% of the external mechanical energy generated to lift and accelerate the overall center of mass at this speed. Pitch, yaw and roll rotational movements of the body were modest (less than +/- 7 degrees), and the mechanical energy required for these rotations was surprisingly small (1.7 microJ stride-1 for pitch, 0.5 microJ stride-1 for yaw and 0.4 microJ stride-1 for roll) as was the power (4.2, 1.2 and 1.1 mW kg-1, respectively). Compared at the same absolute forward speed, the mass-specific kinetic energy generated by the trotting hexaped to swing its limbs was approximately half of that predicted from data on much larger two- and four-legged animals. Compared at an equivalent speed (mid-trotting speed), limb kinetic energy was a smaller fraction of total mechanical energy for cockroaches than for large bipedal runners and hoppers and for quadrupedal trotters. Cockroaches operate at relatively high stride frequencies, but distribute ground reaction forces over a greater number of relatively small legs. The relatively small leg mass and inertia of hexapeds may allow relatively high leg cycling frequencies without exceptionally high internal mechanical energy generation.


1994 ◽  
Vol 188 (1) ◽  
pp. 131-141 ◽  
Author(s):  
R L Marsh ◽  
H B John-Alder

Jumping performance at 20 degrees C was assessed in five species of hylid frogs using high-speed cine film. Mean takeoff velocities (Vt) varied from 1.5 to 2.4 ms-1 among the species. Peak Vt varied from 1.9 to 2.9 ms-1. Body-mass-specific power output averaged over the entire takeoff period varied from 29 to 91 W kg-1 during the jumps with the highest takeoff velocities. These values are similar to those predicted from jumping distance. As the mass of muscles available to power the jump probably amounts to no more than 17% of the body mass, average muscle-mass-specific power can be over 500 W kg-1. The performance during jumping is even more impressive in view of the fact that the peak power during takeoff is about twice the average power. These frogs must use elastic storage to redistribute power during takeoff to produce the peak power required and may use pre-storage of elastic energy to boost the average power available.


2006 ◽  
Vol 273 (1598) ◽  
pp. 2177-2184 ◽  
Author(s):  
Melanie N Scholz ◽  
Kristiaan D'Août ◽  
Maarten F Bobbert ◽  
Peter Aerts

Vertical jumping was used to assess muscle mechanical output in bonobos and comparisons were drawn to human jumping. Jump height, defined as the vertical displacement of the body centre of mass during the airborne phase, was determined for three bonobos of varying age and sex. All bonobos reached jump heights above 0.7 m, which greatly exceeds typical human maximal performance (0.3–0.4 m). Jumps by one male bonobo (34 kg) and one human male (61.5 kg) were analysed using an inverse dynamics approach. Despite the difference in size, the mechanical output delivered by the bonobo and the human jumper during the push-off was similar: about 450 J, with a peak power output close to 3000 W. In the bonobo, most of the mechanical output was generated at the hips. To account for the mechanical output, the muscles actuating the bonobo's hips (directly and indirectly) must deliver muscle-mass-specific power and work output of 615 W kg −1 and 92 J kg −1 , respectively. This was twice the output expected on the basis of muscle mass specific work and power in other jumping animals but seems physiologically possible. We suggest that the difference is due to a higher specific force (force per unit of cross-sectional area) in the bonobo.


2007 ◽  
Vol 23 (2) ◽  
pp. 128-138 ◽  
Author(s):  
Jun Yuda ◽  
Masahiro Yuki ◽  
Toru Aoyanagi ◽  
Norihisa Fujii ◽  
Michiyoshi Ae

The purpose of this study was to investigate technical factors for maintaining skating velocity by kinematic analysis of the skating motion for elite long-distance skaters during the curve phase in official championship races. Sixteen world-class elite male skaters who participated in the 5,000-m race were videotaped with two synchronized high-speed video cameras (250 Hz) in a curve lane by using a panning DLT technique. Three-dimensional coordinates of the body and blades during the first and second halves of the races were collected to calculate kinematic parameters. In the group that maintained greater skating velocity, the thigh angle during the gliding phase of the left stroke during the second half was greater than that during the first half, and the center of mass was located more forward during the second half. Thus, it was suggested that long-distance speed skaters should change the support leg position during the gliding phase in the left stroke of the curve phase under fatigued conditions so that they could extend the support leg with a forward rotation of the thigh and less shank backward rotation.


1982 ◽  
Vol 97 (1) ◽  
pp. 23-40
Author(s):  
M. A. Fedak ◽  
N. C. Heglund ◽  
C. R. Taylor

This is the second paper in a series examining the link between energetics and mechanics of terrestrial locomotion. In this paper, the changes in the kinetic energy of the limbs and body relative to the centre of mass of an animal (EKE, tot) are measured as functions of speed and body size. High-speed films (light or X-ray) of four species of quadrupeds and four species of bipeds running on a treadmill were analysed to determine EKE, tot. A mass-specific power term, EKE, tot/Mb was calculated by adding all of the increments in EKE during an integral number of strides and dividing by the time interval for the strides and body mass. The equations relating EKE, tot/Mb and speed were similar for all bipeds and quadrupeds regardless of size. One general equation for the rate at which muscle and tendons must supply energy to accelerate the limbs and body relative to the centre of mass seems to apply for all of the animals: E'KE, tot/Mb = 0.478 vg1.53 where E'KE, tot/Mb has the units W kg-1 and vg is ground speed in m s-1. Therefore, E'KE, tot/Mb does not change in parallel with the mass-specific rate at which animals consume energy (Emetab/Mb), either as a function of speed or as a function of body size.


2001 ◽  
Vol 204 (21) ◽  
pp. 3601-3619 ◽  
Author(s):  
Graham N. Askew ◽  
Richard L. Marsh ◽  
Charles P. Ellington

SUMMARYBlue-breasted quail (Coturnix chinensis) were filmed during take-off flights. By tracking the position of the centre of mass of the bird in three dimensions, we were able to calculate the power required to increase the potential and kinetic energy. In addition, high-speed video recordings of the position of the wings over the course of the wing stroke, and morphological measurements, allowed us to calculate the aerodynamic and inertial power requirements. The total power output required from the pectoralis muscle was, on average, 390 W kg–1, which was similar to the highest measurements made on bundles of muscle fibres in vitro (433 W kg–1), although for one individual a power output of 530 W kg–1 was calculated. The majority of the power was required to increase the potential energy of the body. The power output of these muscles is the highest yet found for any muscle in repetitive contractions.We also calculated the power requirements during take-off flights in four other species in the family Phasianidae. Power output was found to be independent of body mass in this family. However, the precise scaling of burst power output within this group must await a better assessment of whether similar levels of performance were measured across the group. We extended our analysis to one species of hawk, several species of hummingbird and two species of bee. Remarkably, we concluded that, over a broad range of body size (0.0002–5 kg) and contractile frequency (5–186 Hz), the myofibrillar power output of flight muscles during short maximal bursts is very high (360–460 W kg–1) and shows very little scaling with body mass. The approximate constancy of power output means that the work output varies inversely with wingbeat frequency and reaches values of approximately 30–60 J kg–1 in the largest species.


1905 ◽  
Vol 59 (1537supp) ◽  
pp. 24627-24628
Author(s):  
Charles A. Mudge

1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.


Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.


Sign in / Sign up

Export Citation Format

Share Document