scholarly journals Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50

1998 ◽  
Vol 42 (2) ◽  
pp. 199-209 ◽  
Author(s):  
H Hanaki
Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Ozioma F. Nwabor ◽  
Sukanlaya Leejae ◽  
Supayang P. Voravuthikunchai

As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.


2006 ◽  
Vol 50 (11) ◽  
pp. 3622-3630 ◽  
Author(s):  
Bruno Périchon ◽  
Patrice Courvalin

ABSTRACT Vancomycin resistance of Staphylococcus aureus NY-VRSA and VRSA-5 is due to acquisition of a vanA operon located in a Tn1546-like element. The vanA gene cluster of NY-VRSA contained one copy of insertion sequences IS1251 and IS1216V relative to that of VRSA-5. As evidenced by the nature of the late peptidoglycan precursors and by quantification of d,d-peptidase activities, the vancomycin resistance genes were efficiently expressed in both strains. Study of the stability and inducibility of glycopeptide resistance suggested that low-level glycopeptide resistance of NY-VRSA was most probably due to plasmid instability combined with a long delay for resistance induction. The activity of combinations of vancomycin or teicoplanin with oxacillin against the four VanA-type S. aureus strains already reported was tested by single and double disk diffusion, E-test on agar alone or supplemented with antibiotics, the checkerboard technique, and by determining time-kill curves. A strong synergism against the four clinical isolates, with fractional inhibitory concentration indexes from 0.008 to 0.024, was reproducibly observed between the two antibiotics by all methods. These observations indicate that cell wall inhibitors of the β-lactam and glycopeptide classes exert strong and mutual antagonistic effects on resistance to each other against VanA-type methicillin-resistant S. aureus.


2019 ◽  
Vol 366 (15) ◽  
Author(s):  
Jichun Wang ◽  
Junrui Wang ◽  
Yanyan Wang ◽  
Peng Sun ◽  
Xiaohui Zou ◽  
...  

ABSTRACT Imipenem is a beta-lactam antibiotic mainly active against gram-negative bacterial pathogens and also could cause cell wall impairment in methicillin-resistant Staphylococcus aureus(MRSA). However, related antibacterial mechanisms of imipenem on MRSA and mixed infections of MRSA and gram-negative bacteria are relatively poorly revealed. This study was to identify proteins in the MRSA response to subminimal inhibitory concentrations (sub-MICs) of imipenem treatment. Our results showed that 240 and 58 different expression proteins (DEPs) in sub-MICs imipenem-treated S3 (a standard MRSA strain) and S23 (a clinical MRSA strain) strains were identified through the isobaric tag for relative and absolute quantitation method when compared with untreated S3 and S23 strains, respectively, which was further confirmed by multiple reactions monitoring. Our result also demonstrated that expressions of multiple DEPs involved in cellular proliferation, metabolism and virulence were significantly changed in S3 and S23 strains, which was proved by gene ontology annotations and qPCR analysis. Further, transmission electron microscopy and scanning electron microscopy analysis showed cell wall deficiency, cell lysis and abnormal nuclear mitosis on S23 strain. Our study provides important information for understanding the antibacterial mechanisms of imipenem on MRSA and for better usage of imipenem on patients co-infected with MRSA and other multidrug-resistant gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document