scholarly journals Multidrug Adaptive Resistance of Pseudomonas aeruginosa Swarming Cells

2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Shannon R. Coleman ◽  
Travis Blimkie ◽  
Reza Falsafi ◽  
Robert E. W. Hancock

ABSTRACT Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa. Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.

2012 ◽  
Vol 56 (4) ◽  
pp. 2114-2118 ◽  
Author(s):  
Bettina Schaible ◽  
Cormac T. Taylor ◽  
Kirsten Schaffer

ABSTRACTAntibiotic resistance is a significant and developing problem in general medical practice and a common clinical complication in cystic fibrosis patients infected withPseudomonas aeruginosa. Such infections occur within hypoxic mucous deposits in the cystic fibrosis lung; however, little is known about how the hypoxic microenvironment influences pathogen behavior. Here we investigated the impact of hypoxia on antibiotic resistance inP. aeruginosa. The MICs of a selection of antibiotics were determined forP. aeruginosagrown under either normoxic or hypoxic conditions. The expression of mRNAs for resistance-nodulation-cell division (RND) multidrug efflux pump linker proteins was determined by real-time PCR, and multidrug efflux pump activity was inhibited using Phe-Arg β-naphthylamide dihydrochloride. The MIC values of a subset of clinically importantP. aeruginosaantibiotics were higher for bacteria incubated under hypoxia than under normoxia. Furthermore, hypoxia altered the stoichiometry of multidrug efflux pump linker protein subtype expression, and pharmacologic inhibition of these pumps reversed hypoxia-induced antibiotic resistance. We hypothesize that hypoxia increases multidrug resistance inP. aeruginosaby shifting multidrug efflux pump linker protein expression toward a dominance of MexEF-OprN. Thus, microenvironmental hypoxia may contribute significantly to the development of antibiotic resistance inP. aeruginosainfecting cystic fibrosis patients.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Paulo Juarez ◽  
Katy Jeannot ◽  
Patrick Plésiat ◽  
Catherine Llanes

ABSTRACT The multidrug efflux system MexEF-OprN is produced at low levels in wild-type strains of Pseudomonas aeruginosa. However, in so-called nfxC mutants, mutational alteration of the gene mexS results in constitutive overexpression of the pump, along with increased resistance of the bacterium to chloramphenicol, fluoroquinolones, and trimethoprim. In this study, analysis of in vitro-selected chloramphenicol-resistant clones of strain PA14 led to the identification of a new class of MexEF-OprN-overproducing mutants (called nfxC2) exhibiting alterations in an as-yet-uncharacterized gene, PA14_38040 (homolog of PA2047 in strain PAO1). This gene is predicted to encode an AraC-like transcriptional regulator and was called cmrA (for chloramphenicol resistance activator). In nfxC2 mutants, the mutated CmrA increases its proper gene expression and upregulates the operon mexEF-oprN through MexS and MexT, resulting in a multidrug resistance phenotype without significant loss in bacterial virulence. Transcriptomic experiments demonstrated that CmrA positively regulates a small set of 11 genes, including PA14_38020 (homolog of PA2048), which is required for the MexS/T-dependent activation of mexEF-oprN. PA2048 codes for a protein sharing conserved domains with the quinol monooxygenase YgiN from Escherichia coli. Interestingly, exposure of strain PA14 to toxic electrophilic molecules (glyoxal, methylglyoxal, and cinnamaldehyde) strongly activates the CmrA pathway and upregulates MexEF-OprN and, thus, increases the resistance of P. aeruginosa to the pump substrates. A picture emerges in which MexEF-OprN is central in the response of the pathogen to stresses affecting intracellular redox homeostasis.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Evelyn Sun ◽  
Erin E. Gill ◽  
Reza Falsafi ◽  
Amy Yeung ◽  
Sijie Liu ◽  
...  

ABSTRACT Surfing motility is a novel form of surface adaptation exhibited by the nosocomial pathogen Pseudomonas aeruginosa in the presence of the glycoprotein mucin, which is found in high abundance at mucosal surfaces, especially those of the lungs of cystic fibrosis and bronchiectasis patients. Here, we investigated the adaptive antibiotic resistance of P. aeruginosa under conditions in which surfing occurs compared that in to cells undergoing swimming. P. aeruginosa surfing cells were significantly more resistant to several classes of antibiotics, including aminoglycosides, carbapenems, polymyxins, and fluoroquinolones. This was confirmed by incorporation of antibiotics into growth medium, which revealed a concentration-dependent inhibition of surfing motility that occurred at concentrations much higher than those needed to inhibit swimming. To investigate the basis of resistance, transcriptome sequencing (RNA-Seq) was performed and revealed that surfing influenced the expression of numerous genes. Included among genes dysregulated under surfing conditions were multiple genes from the Pseudomonas resistome; these genes are known to affect antibiotic resistance when mutated. Screening transposon mutants in these surfing-dysregulated resistome genes revealed that several of these mutants exhibited changes in susceptibility to one or more antibiotics under surfing conditions, consistent with a contribution to the observed adaptive resistance. In particular, several mutants in resistome genes, including armR, recG, atpB, clpS, nuoB, and certain hypothetical genes, such as PA5130, PA3576, and PA4292, showed contributions to broad-spectrum resistance under surfing conditions and could be complemented by their respective cloned genes. Therefore, we propose that surfing adaption led to extensive multidrug adaptive resistance as a result of the collective dysregulation of diverse genes.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 255
Author(s):  
Salma M. Abdelaziz ◽  
Khaled M. Aboshanab ◽  
Ibrahim S. Yahia ◽  
Mahmoud A. Yassien ◽  
Nadia A. Hassouna

In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.


2018 ◽  
Vol 63 (2) ◽  
pp. e01718-18 ◽  
Author(s):  
Srijan Ranjitkar ◽  
Adriana K. Jones ◽  
Mina Mostafavi ◽  
Zachary Zwirko ◽  
Oleg Iartchouk ◽  
...  

ABSTRACT Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa. Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.


2000 ◽  
Vol 44 (3) ◽  
pp. 658-664 ◽  
Author(s):  
Hideaki Maseda ◽  
Hiroshi Yoneyama ◽  
Taiji Nakae

ABSTRACT Pseudomonas aeruginosa expresses a low level of the MexAB-OprM efflux pump and shows natural resistance to many structurally and functionally diverse antibiotics. The mutation that has been referred to previously as nfxC expresses an additional efflux pump, MexEF-OprN, exhibiting resistance to fluoroquinolones, imipenem, and chloramphenicol and hypersusceptibility to β-lactam antibiotics. To address the antibiotic specificity of the MexEF-OprN efflux pump, we introduced a plasmid carrying themexEF-oprN operon into P. aeruginosa lacking the mexAB-oprM operon. The transformants exhibited resistance to fluoroquinolones, trimethoprim, and chloramphenicol but, unlike most nfxC-type mutants, did not show β-lactam hypersusceptibility. The transformants exhibited additional resistance to tetracycline. In the next experiment, we analyzed the MexEF-OprN pump subunit(s) responsible for substrate selectivity by expressing MexE, MexF, OprN, and MexEF in strains lacking MexA, MexB, OprM, and MexAB, respectively. The MexEF-OprM/ΔMexAB transformants exhibited MexEF-OprN-type pump function that rendered the strains resistant to fluoroquinolones and chloramphenicol but did not change susceptibility to β-lactam antibiotics compared with the host strain. The MexAB-OprN/ΔOprM, MexAF-OprM/ΔMexB, and MexEB-OprM/ΔMexA mutants exhibited antibiotic susceptibility indistinguishable from that in the mutant lacking both types of efflux pumps. The results imply that the MexEF-OprM pump selects substrates by a MexEF functional unit. Interestingly, OprN did not link functionally with the MexAB complex, despite the fact that OprM interacted functionally with MexEF.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Meinan Lyu ◽  
Mitchell A. Moseng ◽  
Jennifer L. Reimche ◽  
Concerta L. Holley ◽  
Vijaya Dhulipala ◽  
...  

ABSTRACT Neisseria gonorrhoeae is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in N. gonorrhoeae is the multiple transferrable resistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g., β-lactams and macrolides), dyes, detergents and host-derived antimicrobials (e.g., cationic antimicrobial peptides and bile salts). Recently, it has been found that gonococci bearing mosaic-like sequences within the mtrD gene can result in amino acid changes that increase the MtrD multidrug efflux pump activity, probably by influencing antimicrobial recognition and/or extrusion to elevate the level of antibiotic resistance. Here, we report drug-bound solution structures of the MtrD multidrug efflux pump carrying a mosaic-like sequence using single-particle cryo-electron microscopy, with the antibiotics bound deeply inside the periplasmic domain of the pump. Through this structural approach coupled with genetic studies, we identify critical amino acids that are important for drug resistance and propose a mechanism for proton translocation. IMPORTANCE Neisseria gonorrhoeae has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that N. gonorrhoeae uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene mtrD, encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of N. gonorrhoeae MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps.


Author(s):  
Zheng Fan ◽  
Xiaolei Pan ◽  
Dan Wang ◽  
Ronghao Chen ◽  
Tongtong Fu ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen that shows high intrinsic resistance to a variety of antibiotics. The MexX-MexY-OprM efflux pump plays an important role in the bacterial resistance to aminoglycoside antibiotics. Polynucleotide phosphorylase (PNPase) is a highly conserved exonuclease that plays important roles in RNA processing and bacterial response to environmental stresses. Previously, we demonstrated that PNPase controls the tolerance to fluoroquinolone antibiotics by influencing the production of pyocin in P. aeruginosa. In this study, we found that mutation of the PNPase coding gene (pnp) in P. aeruginosa increases the bacterial tolerance to aminoglycoside antibiotics. We further demonstrate that upregulation of the mexXY genes is responsible for the increased tolerance in the pnp mutant. Furthermore, our experimental results revealed that PNPase controls translation of the armZ mRNA through its 5′ untranslated region (5′-UTR). ArmZ had previously been shown to positively regulate the expression of mexXY. Therefore, our results revealed a novel role of PNPase in the regulation of armZ and subsequently the MexXY efflux pump.


1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.


Sign in / Sign up

Export Citation Format

Share Document