scholarly journals Molecular mechanisms of resistance in multidrug-resistant serovars of Salmonella enterica isolated from foods in Germany

2005 ◽  
Vol 56 (6) ◽  
pp. 1025-1033 ◽  
Author(s):  
Angelika Miko ◽  
Karin Pries ◽  
Andreas Schroeter ◽  
Reiner Helmuth
2009 ◽  
Vol 53 (6) ◽  
pp. 2450-2454 ◽  
Author(s):  
Inácio Mandomando ◽  
Dinis Jaintilal ◽  
Maria J. Pons ◽  
Xavier Vallès ◽  
Mateu Espasa ◽  
...  

ABSTRACT The antimicrobial susceptibility and mechanisms of resistance of 109 Shigella and 40 Salmonella isolates from children with diarrhea in southern Mozambique were assessed. The susceptibility to seven antimicrobial agents was tested by disk diffusion, and mechanisms of resistance were searched by PCR or colorimetric method. A high proportion of Shigella isolates were resistant to chloramphenicol (Chl) (52%), ampicillin (Amp) (56%), tetracycline (Tet) (66%), and trimethoprim-sulfamethoxazole (Sxt) (84%). Sixty-five percent of the isolates were multidrug resistant. Shigella flexneri isolates were more resistant than those of Shigella sonnei to Amp (66% versus 0.0%, P < 0.001) and Chl (61% versus 0.0%, P < 0.001), whereas S. sonnei isolates presented higher resistance to Tet than S. flexneri isolates (93% versus 64%, P = 0.02). Resistance among Salmonella isolates was as follows: Tet and Chl, 15% each; Sxt, 18%; and Amp, 25%. Only 3% of Salmonella isolates were resistant to nalidixic acid (Nal), and none to ciprofloxacin or ceftriaxone (Cro). Among Salmonella isolates, multiresistance was found in 23%. Among Shigella isolates, antibiotic resistance was related mainly to the presence of oxa-1-like β-lactamases for Amp, dfrA1 genes for Sxt, tetB genes for Tet, and Chl acetyltransferase (CAT) activity for Chl. Among Salmonella isolates, resistance was conferred by tem-like β-lactamases for Amp, floR genes and CAT activity for Chl, tetA genes for Tet, and dfrA1 genes for Sxt. Our data show that Shigella isolates are resistant mostly to the most available, inexpensive antibiotics by various molecular mechanisms but remain susceptible to ciprofloxacin, Cro, and Nal, which is the first line for empirical treatment of shigellosis in the country.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adrianna M. Turner ◽  
Jean Y. H. Lee ◽  
Claire L. Gorrie ◽  
Benjamin P. Howden ◽  
Glen P. Carter

Multidrug-resistant Staphylococcus and vancomycin-resistant Enterococcus (VRE) are important human pathogens that are resistant to most clinical antibiotics. Treatment options are limited and often require the use of ‘last-line’ antimicrobials such as linezolid, daptomycin, and in the case of Staphylococcus, also vancomycin. The emergence of resistance to these last-line antimicrobial agents is therefore of considerable clinical concern. This mini-review provides an overview of resistance to last-line antimicrobial agents in Staphylococcus and VRE, with a particular focus on how genomics has provided critical insights into the emergence of resistant clones, the molecular mechanisms of resistance, and the importance of mobile genetic elements in the global spread of resistance to linezolid.


2016 ◽  
Vol 14 (4) ◽  
pp. 3269-3276 ◽  
Author(s):  
Jian-Zeng Yang ◽  
Shu-Rong Ma ◽  
Xiao-Li Rong ◽  
Mei-Ju Zhu ◽  
Qiu-Ye Ji ◽  
...  

Author(s):  
A. S. Pavlova ◽  
Yu. A. Bocharova ◽  
K. V. Kuleshov ◽  
A. T. Podkolzin ◽  
I. V. Chebotar

Nontyphoid strains of Salmonella enterica pose a great threat to human health. The problem of salmonellosis is aggravated compounded by the progressive spread of antibiotic resistance among clinical and agricultural strains of S. enterica. This literature review summarizes the current knowledge of the mechanisms of antibiotic resistance in S. enterica and illustrates the diversity and complexity of molecular systems providing antibiotic resistance. The spectrum of natural resistance is described and the adaptive (acquired) mechanisms of resistance to representatives of the main classes of antibiotics, including fluoroquinolones, aminoglycosides, tetracyclines, nitrofurans, sulfonamides, fosfomycin and chloramphenicol, are thoroughly characterized. Particular emphasis is placed on the analysis of the molecular genetic mechanisms of S. enterica resistance to representatives of the most important classes of antibiotics — β-lactams, and to reserve antibiotics — polymyxins (colistin). Genetic determinants of resistance, transmitted by a horizontal path route are also described. The review analyzes only those variants of the molecular mechanisms of antibiotic resistance where the clinical significance has been proven by a set of correct genetic (sequencing) and biochemical (confirmation of the spectrum of hydrolyzed β-lactams) studies. The main ways of regulating the expression of antibiotic resistance are also described. Many S. enterica strains exhibit a combination of different mechanisms of antibiotic resistance and have a multiple resistance. The question was raised about the heterogeneity of the distribution of resistance among different groups/serotypes within the S. enterica species. In particular, some clonal complexes with signs of resistance are more successful pathogens in humans and animals. Salmonella, like most other bacteria, exhibit a non-canonical type of antibiotic resistance — biofilm resistance, which is realized through several mechanisms, the main of which are the filtering/sorption capacity of the biofilm matrix and the transformation of biofilm cells into dormant and persistent forms.Despite the fact that the functional significance of the molecular assemblies that determine antibiotic resistance is the same for all enterobacteria, the specification of the mechanisms of resistance in Salmonella is a necessary link for the development of molecular diagnostic systems for assessing the sensitivity to antimicrobial drugs. 


Author(s):  
Dr. Manish Kulshrestha ◽  
Dr. Anjali Kulshrestha

INTRODUCTION: Enteric fever includes typhoid and paratyphoid fever. Peak incidence is seen in children 5–15 years of age; but in regions where the disease is highly endemic, as in India, children younger than 5 years of age may have the highest infection rates. There are about 22 million new typhoid cases occur each year. Young children in poor, resource limited areas, who make up the majority of the new cases and there is a mortality figures of 215,000 deaths annually. A sharp decline in the rates of complications and mortality due to typhoid fever is observed as a result of introduction of effective antibiotic therapy since 1950s. MDR-ST became endemic in many areas of Asia, including India soon after multidrug-resistant strains of Salmonella enterica serotype typhi (MDR-ST) that were resistant to all the three first-line drugs then in use, namely chloramphenicol, amoxycillin and co-trimoxazole emerged in early 1990s. MATERIAL AND METHODS: Only blood culture or bone marrow culture positive cases were included. The patients with culture isolated enteric fever were included in the study. Antimicrobial susceptibility testing was carried out by disk diffusion method using antibiotic discs. The analysis of the antimicrobial susceptibility was carried out as per CLSI interpretative guidelines. RESULTS: A total of 82 culture positive cases were included in the present study. 80 culture isolates were from blood culture and 2 from the bone marrow culture. Salmonella entericasubspecies enterica serovartyphi (S typhi) was isolated from 67 (81.70%) patients while Salmonella enterica subspecies entericaserovarparatyphi (S paratyphi A) was isolated from 13 (15.85%) cases and 2 (2.44%) were Salmonella enterica subspecies entericaserovarschottmuelleri (S paratyphi B). Of the 82 cases 65(79.3%) isolates were resistant to ciprofloxacin, 17 (20.7%) were resistant to nalidixic acid, one (1.2%) case each was resistant to Cefotaxime and ceftriaxone, 2 (2.4%) were resistant to chloramphenicol, 10 (12.2%) were resistant and to cotrimoxazole 3 (3.7%) were resistant. CONCLUSION: In a culture positive cases 65(79.3%) isolates were resistant to ciprofloxacin and 17 (20.7%) were resistant to nalidixic acid. Multidrug resistant isolates were 65(79.3%).


Author(s):  
Arianna Filippelli ◽  
Valerio Ciccone ◽  
Sandra Donnini ◽  
Lucia Morbidelli

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 206
Author(s):  
Md Bashir Uddin ◽  
S.M. Bayejed Hossain ◽  
Mahmudul Hasan ◽  
Mohammad Nurul Alam ◽  
Mita Debnath ◽  
...  

Colistin (polymyxin E) is widely used in animal and human medicine and is increasingly used as one of the last-resort antibiotics against Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant Gram-negative bacteria, resistance to this antibiotic ought to be monitored. The study was undertaken to elucidate the molecular mechanisms, genetic relationships and phenotype correlations of colistin-resistant isolates. Here, we report the detection of the mcr-1 gene in chicken-associated Salmonella isolates in Bangladesh and its in-silico functional analysis. Out of 100 samples, 82 Salmonella spp. were isolated from chicken specimens (liver, intestine). Phenotypic disc diffusion and minimum inhibitory concentration (MIC) assay using different antimicrobial agents were performed. Salmonella isolates were characterized using PCR methods targeting genus-specific invA and mcr-1 genes with validation for the functional analysis. The majority of the tested Salmonella isolates were found resistant to colistin (92.68%), ciprofloxacin (73.17%), tigecycline (62.20%) and trimethoprim/sulfamethoxazole (60.98%). When screened using PCR, five out of ten Salmonella isolates were found to carry the mcr-1 gene. One isolate was confirmed for Salmonella enterica subsp. enterica serovar Enteritidis, and other four isolates were confirmed for Salmonella enterica subsp. enterica serovar Typhimurium. Sequencing and phylogenetic analysis revealed a divergent evolutionary relationship between the catalytic domain of Neisseria meningitidis lipooligosaccharide phosphoethanolamine transferase A (LptA) and MCR proteins, rendering them resistant to colistin. Three-dimensional homology structural analysis of MCR-1 proteins and molecular docking interactions suggested that MCR-1 and LptA share a similar substrate binding cavity, which could be validated for the functional analysis. The comprehensive molecular and in-silico analyses of the colistin resistance mcr-1 gene of Salmonella spp. of chicken origin in the present study highlight the importance of continued monitoring and surveillance for antimicrobial resistance among pathogens in food chain animals.


2019 ◽  
Vol 2019 (1) ◽  
pp. 169-180
Author(s):  
Joseph L Graves ◽  
Akamu J Ewunkem ◽  
Jason Ward ◽  
Constance Staley ◽  
Misty D Thomas ◽  
...  

Abstract Background and Objectives Metallic antimicrobial materials are of growing interest due to their potential to control pathogenic and multidrug-resistant bacteria. Yet we do not know if utilizing these materials can lead to genetic adaptations that produce even more dangerous bacterial varieties. Methodology Here we utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance. Results By day 10 of evolution, increased gallium resistance was evident in populations cultured in medium containing a sublethal concentration of gallium. Furthermore, these populations showed increased resistance to ionic silver and iron (III), but not iron (II) and no increase in traditional antibiotic resistance compared with controls and the ancestral strain. In contrast, the control populations showed increased resistance to rifampicin relative to the gallium-resistant and ancestral population. Genomic analysis identified hard selective sweeps of mutations in several genes in the gallium (III)-resistant lines including: fecA (iron citrate outer membrane transporter), insl1 (IS30 tranposase) one intergenic mutations arsC →/→ yhiS; (arsenate reductase/pseudogene) and in one pseudogene yedN ←; (iapH/yopM family). Two additional significant intergenic polymorphisms were found at frequencies &gt; 0.500 in fepD ←/→ entS (iron-enterobactin transporter subunit/enterobactin exporter, iron-regulated) and yfgF ←/→ yfgG (cyclic-di-GMP phosphodiesterase, anaerobic/uncharacterized protein). The control populations displayed mutations in the rpoB gene, a gene associated with rifampicin resistance. Conclusions This study corroborates recent results observed in experiments utilizing pathogenic Pseudomonas strains that also showed that Gram-negative bacteria can rapidly evolve resistance to an atom that mimics an essential micronutrient and shows the pleiotropic consequences associated with this adaptation. Lay summary We utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance.


2007 ◽  
Vol 42 (10) ◽  
pp. 1365-1378 ◽  
Author(s):  
José S. RodrÍguez-Zavala ◽  
Jorge D. GarcÍa-GarcÍa ◽  
Marco A. Ortiz-Cruz ◽  
Rafael Moreno-Sánchez

Sign in / Sign up

Export Citation Format

Share Document