scholarly journals Macrolide resistance mechanisms and in vitro susceptibility patterns of viridans group streptococci isolated from blood cultures

2005 ◽  
Vol 57 (1) ◽  
pp. 139-141 ◽  
Author(s):  
Alper Ergin ◽  
Serpil Ercis ◽  
Gülşen Hasçelik
2005 ◽  
Vol 49 (2) ◽  
pp. 820-823 ◽  
Author(s):  
Iciar Rodríguez-Avial ◽  
Carmen Rodríguez-Avial ◽  
Esther Culebras ◽  
Juan J. Picazo

ABSTRACT The in vitro activities of penicillin, erythromycin, clindamycin, and telithromycin were determined against 155 viridans group streptococci (VGS) and 18 Streptococcus bovis blood isolates. Heterogeneity in the susceptibility patterns and macrolide resistance phenotypes and genotypes in the different groups of VGS was detected. We found seven telithromycin-resistant S. bovis isolates all harboring the erm(B) gene.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S203-S203
Author(s):  
Brenda L Tesini ◽  
Meghan Lyman ◽  
Brendan R Jackson ◽  
Anita Gellert ◽  
William Schaffner ◽  
...  

Abstract Background Multidrug resistant Candida is an increasing concern. C. parapsilosis in particular has decreased in vitro susceptibility to echinocandins. As a result, fluconazole had been favored for C. parapsilosis treatment. However, there is growing concern about increasing azole resistance among Candida species. We report on antifungal susceptibility patterns of C. parapsilosis in the US from 2008 through 2018. Methods Active, population-based surveillance for candidemia through the Centers for Disease Control and Prevention’s (CDC) Emerging Infections Program was conducted between 2008–2018, eventually encompassing 9 states (GA, MD,OR, TN, NY, CA, CO, MN, NM). Each incident isolate was sent to the CDC for species confirmation and antifungal susceptibility testing (AFST). Frequency of resistance was calculated and stratified by year and state using SAS 9.4 Results Of the 8,704 incident candidemia isolates identified, 1,471 (15%) were C. parapsilosis; the third most common species after C. albicans and C. glabrata. AFST results were available for 1,340 C. parapsilosis isolates. No resistance was detected to caspofungin (MIC50 0.25) or micafungin (MIC50 1.00) with only one (< 1%) isolate resistant to anidulafungin (MIC50 1.00). In contrast, 84 (6.3%) isolates were resistant to fluconazole and another 44 (3.3%) isolates had dose-dependent susceptibility to fluconazole (MIC50 1.00). Fluconazole resistance increased sharply from an average of 4% during 2008–2014 to a peak of 14% in 2016 with a subsequent decline to 6% in 2018 (see figure). Regional variation is also observed with fluconazole resistance ranging from 0% (CO, MN, NM) to 42% (NY) of isolates by site. Conclusion The recent marked increase in fluconazole resistance among C. parapsilosis highlights this pathogen as an emerging drug resistant pathogen of concern and the need for ongoing antifungal resistance surveillance among Candida species. Our data support the empiric use of echinocandins for C. parapsilosis bloodstream infections and underscore the need to obtain AFST prior to fluconazole treatment. Furthermore, regional variation in fluconazole resistance emphasizes the importance of understanding local Candida susceptibility patterns. Disclosures Lee Harrison, MD, GSK (Consultant)Merck (Consultant)Pfizer (Consultant)Sanofi Pasteur (Consultant)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)


2021 ◽  
Author(s):  
Federica Romanelli ◽  
Stefania Stolfa ◽  
Anna Morea ◽  
Luigi Ronga ◽  
Raffaele Del Prete ◽  
...  

Aim: Infections by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae represent a major challenge because of limited treatment strategies. New β-lactam/β-lactamase inhibitor associations may help to deal with this challenge. The aim of this study is to evaluate the in vitro susceptibility of KPC-producing K. pneumoniae for meropenem/vaborbactam in comparison with ceftazidime/avibactam against. Materials and methods: Twenty-eight strains isolated from blood cultures were evaluated. Testing for susceptibility to meropenem/vaborbactam and ceftazidime/avibactam was performed by E-test gradient strip. Results: All the clinical isolates were susceptible to meropenem/vaborbactam, while one strain was resistant to ceftazidime/avibactam with a MIC of 32 μg/ml. The median MIC of ceftazidime/avibactam evaluated after standardization was higher compared with that of meropenem/vaborbactam. Conclusion: Meropenem/vaborbactam could be an important turning point in the treatment of KPC-producing K. pneumoniae infections, especially considering the emergence of ceftazidime/avibactam resistance.


PEDIATRICS ◽  
1951 ◽  
Vol 8 (3) ◽  
pp. 406-412
Author(s):  
EARLE H. SPAULDING

Bacterial strains within a single species exhibit highly specific susceptibility patterns when tested with the several antibiotics currently available. Because in vitro susceptibility tests constitute the only certain method for predicting clinical response, the bacteriology laboratory is playing an expanding part in the choice and control of antibiotic therapy. Although there is no need for bacteriologic studies in the vast majority of infections, they are sometimes essential to the successful management of severe acute, refractory and relapsing infections. The correlation between laboratory and clinical results is good providing allowances are made for certain factors discussed in this paper. Antibiotic susceptibility tests are entirely practical and should be used routinely in all laboratories which do bacterial cultures.


Sign in / Sign up

Export Citation Format

Share Document