scholarly journals Evaluation of Vitek®2 performance for colistin susceptibility testing for Gram-negative isolates

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Surbhi Khurana ◽  
Rajesh Malhotra ◽  
Purva Mathur

Abstract Background The emerging resistance to the last-resort antimicrobial colistin is being reported globally. Underestimation of the burden of colistin resistance and misinterpretation of colistin susceptibility test results, using suboptimal testing methods, may be causing unexplained treatment failures and even mortality among critically ill patients. Thus, this study was conducted at an apex trauma centre to assess the performance of Vitek®2 for colistin susceptibility testing. Methods A total of 910 clinical isolates of Gram-negative bacteria (GNB), including Enterobacterales, Acinetobacter baumannii and Pseudomonas aeruginosa, were tested and analysed for colistin resistance using Vitek®2. Broth microdilution (BMD) was taken as the reference method. The essential (EA) and categorical (CA) agreements and very major error (VME) and major error (ME) rates were calculated. An MIC correlation was taken to be positive with EA ≥ 90%, CA ≥ 90%, VME ≤ 1.5% and ME ≤ 3.0% rates. Spearman’s coefficient was calculated and P < 0.05 was considered statistically significant. Results A total of 64% of isolates were MDR. Overall, 196 (21.5%) and 110 (12%) of isolates were resistant to colistin by BMD and Vitek®2, respectively. The automated Vitek®2 method failed to detect the resistance in up to 48.5% of GNB tested. When comparing Vitek®2 colistin interpretive results with reference BMD for all 910 isolates, the CA was 88% (798/910) with 10% (95/910) VMEs and 1% (9/910) MEs. Conclusions The Vitek®2 method for colistin susceptibility testing, still in use in some settings; is a suboptimal and unreliable method.

2021 ◽  
Vol 70 (6) ◽  
Author(s):  
Hyunsul Jung ◽  
Johann D. D. Pitout ◽  
Barend C. Mitton ◽  
Kathy-Anne Strydom ◽  
Chanel Kingsburgh ◽  
...  

Introduction. Colistin is one of the last-resort antibiotics for treating multidrug-resistant (MDR) or extensively drug-resistant (XDR) lactose non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii . Gap Statement. As the rate of colistin resistance is steadily rising, there is a need for rapid and accurate antimicrobial susceptibility testing methods for colistin. The Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test has recently been developed for rapid detection of colistin resistance in P. aeruginosa and A. baumannii . Aim. The present study aimed to evaluate the performance of the Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test in comparison with the reference broth microdilution (BMD) method. Methodology. The Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test was performed using a total of 135 P . aeruginosa (17 colistin-resistant and 118 colistin-susceptible) and 66 A. baumannii isolates (32 colistin-resistant and 34 colistin-susceptible), in comparison with the reference BMD method. Results. The categorical agreement of the Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test with the reference BMD method was 97.5 % with a major error rate of 0 % (0/152) and a very major error (VME) rate of 10.2 %. The VME rate was higher (23.5 %) when calculated separately for P. aeruginosa isolates. The overall sensitivity and specificity were 89.8 and 100 %, respectively. Conclusion. The Rapid ResaPolymyxin Acinetobacter / Pseudomonas NP test performed better for A. baumannii than for P. aeruginosa .


Author(s):  
Romney Humphries ◽  
Shelley Campeau ◽  
Thomas E. Davis ◽  
Kristin J. Nagaro ◽  
Vincent J. LaBombardi ◽  
...  

In this multisite study, VITEK® 2 AST-Gram-Negative Ceftazidime-Avibactam (CZA) test results for 1073 isolates (866 Enterobacterales and 207 Pseudomonas aeruginosa) were compared to the Clinical & Laboratory Standards Institute (CLSI) broth microdilution (BMD) reference method. The results were analyzed for essential agreement (EA), category agreement (CA), major error rates, and very major error rates following FDA/ISO performance criteria using the FDA-recognized CLSI/EUCAST breakpoints (S ≤8/4 μg/ml and R ≥16/4 μg/ml). The overall EA was 94.5% (1014/1073) and CA was 98.7% (1059/1073). No very major errors were reported. The major error rate was 1.4% (14/998). Out of 14 major errors, 9 were within EA. Based on the EA and lack of an intermediate category for CZA, the adjusted major error rate for FDA criteria was 0.5% (5/998). The performance for ISO criteria after error resolutions included EA 94.5% (1014/1073), CA 98.9% (1061/1073), major error 1.2% (12/998), and no very major error. Vitek 2 met the ISO and FDA criteria of ≥95% reproducibility and ≥95% quality control (QC) results within acceptable ranges for QC organisms. Vitek 2 overall performance for Enterobacterales and P. aeruginosa met or exceeded the FDA and ISO performance criteria and thus is a reliable alternative to BMD reference method for routine CZA susceptibility testing.


2013 ◽  
Vol 58 (3) ◽  
pp. 1763-1767 ◽  
Author(s):  
L. V. Perdigão-Neto ◽  
M. S. Oliveira ◽  
C. F. Rizek ◽  
C. M. D. M. Carrilho ◽  
S. F. Costa ◽  
...  

ABSTRACTFosfomycin may be a treatment option for multiresistant Gram-negative bacteria. This study compared susceptibility methods using 94 multiresistant clinical isolates. With agar dilution (AD), susceptibilities were 81%, 7%, 96%, and 100% (CLSI) and 0%, 0%, 96%, and 30% (EUCAST), respectively, forAcinetobacter baumannii,Pseudomonas aeruginosa,Klebsiella pneumoniae, andEnterobacterspp. Categorical agreement between Etest and AD forEnterobacteriaceaeandA. baumanniiwas ≥80%. Disk diffusion was adequate only forEnterobacter. CLSI criteria for urine may be adequate for systemic infections.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sima Babaei ◽  
Mehri Haeili

Abstract Background The current emergence of multi-drug resistance among nosocomial pathogens has led to increased use of last-resort agents including Tigecycline (TGC). Availability of reliable methods for testing TGC susceptibility is crucial to accurately predict clinical outcomes. We evaluated the influence of different methodologies and type of media on TGC susceptibility of different gram-negative bacteria of clinical origin. Methods The TGC susceptibility of 84 clinical isolates of Klebsiella pneumoniae (n = 29), Escherichia coli (n = 30), and Acinetobacter baumannii (n = 25) was tested by broth microdilution (BMD), Etest, agar dilution (AD) and disk diffusion (DD) methods using Mueller Hinton agar from Difco and Mueller Hinton broth (MHB) from two different manufacturers (Difco and Condalab). FDA TGC susceptibility breakpoints issued for Enterobacteriaceae were used for interpretation of the results. Results MICs determined by BMD using MHB from two suppliers showed a good correlation with overall essential agreement (EA) and categorical agreement (CA) being 100% and 95% respectively. However, a twofold rise in BMD-Condalab MICs which was detected in 50% of the isolates, resulted in changes in susceptibility categories of few isolates with MICs close to susceptibility breakpoints leading to an overall minor error (MI) rate of 4.7%. Among the tested methods, Etest showed the best correlation with BMD, being characterized with the lowest error rates (only 1% MI) and highest overall EA (100%) and CA (98.8%) for all subsets of isolates. AD yielded the lowest overall agreement (EA 77%, CA 81%) with BMD in a species dependent manner, with the highest apparent discordance being found among the A. baumannii isolates. While the performance of DD for determination of TGC susceptibility among Enterobacteriaceae was excellent, (CA:100% with no errors), the CA was lower (84%) when it was used for A. baumannii where an unacceptably high minor-error rate was noted (16%). No major error or very major error was detected for any of the tested methods. Conclusions Etest can be reliably used for TGC susceptibility testing in the three groups of studied bacteria. For the isolates with close-to-breakpoint MICs, testing susceptibility using the reference method is recommended.


2017 ◽  
Vol 55 (9) ◽  
pp. 2609-2616 ◽  
Author(s):  
Ka Lip Chew ◽  
My-Van La ◽  
Raymond T. P. Lin ◽  
Jeanette W. P. Teo

ABSTRACT Colistin and polymyxin B remain part of the last line of antibiotics for multidrug-resistant Gram-negative bacteria, such as carbapenem-resistant Enterobacteriaceae . Current joint EUCAST-CLSI recommendations are for broth microdilution (BMD) to be performed for MIC testing of colistin. Commercial susceptibility testing methods were evaluated and compared against the reference BMD, using a susceptibility breakpoint of ≤2 mg/liter for both colistin and polymyxin B. Seventy-six Enterobacteriaceae were included, of which 21 were mcr-1 positive (18 Escherichia coli isolates, 2 Klebsiella pneumoniae isolates, and 1 Enterobacter aerogenes isolate). Rates of essential agreement (EA) of colistin test results between BMD and Vitek 2, Sensititre, and Etest were 93.4%, 89.5%, and 75.0%, respectively. Rates of EA of polymyxin B test results between BMD and Vitek 2, Sensititre, and Etest were 96.1%, 96.1%, and 48.7%, respectively. A positive MIC correlation with a categorical agreement of >90% was achieved for Sensititre (colistin Spearman's ρ = 0.863, and polymyxin B Spearman's ρ = 0.877) and Vitek 2 (polymyxin B [only] Spearman's ρ = 0.8917). Although a positive MIC correlation (Spearman's ρ = 0.873) with the reference method was achieved for colistin testing with Vitek 2, categorical agreement was <90%, with very major error rates of 36%. Correlation with the Etest MIC was lower, with very major error rates of 12% (colistin) and 26.1% (polymyxin B). MicroScan (colistin) categorical agreement was 88.2%, with a very major error rate of 4%. Colistin MICs for 15 of the 21 mcr-1 -positive isolates were >2 mg/liter, and polymyxin MICs for 17 of them were >2 mg/liter by broth microdilution. The use of a lower breakpoint of ≤1 mg/liter further improves detection of mcr-1 for all testing methods. However, further data on the correlation between MICs and clinical outcome are required to determine the most suitable breakpoint to guide clinical management.


2014 ◽  
Vol 6 (01) ◽  
pp. 001-006 ◽  
Author(s):  
Gunjan Gupta ◽  
Vibhor Tak ◽  
Purva Mathur

ABSTRACT AmpC β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor/β-lactam combinations. The increase in antibiotic resistance among Gram-negative bacteria is a notable example of how bacteria can procure, maintain and express new genetic information that can confer resistance to one or several antibiotics. Detection of organisms producing these enzymes can be difficult, because their presence does not always produce a resistant phenotype on conventional disc diffusion or automated susceptibility testing methods. These enzymes are often associated with potentially fatal laboratory reports of false susceptibility to β-lactams phenotypically. With the world-wide increase in the occurrence, types and rate of dissemination of these enzymes, their early detection is critical. AmpC β-lactamases show tremendous variation in geographic distribution. Thus, their accurate detection and characterization are important from epidemiological, clinical, laboratory, and infection control point of view. This document describes the methods for detection for AmpC β-lactamases, which can be adopted by routine diagnostic laboratories.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Zhu ◽  
Peiyao Jia ◽  
Menglan Zhou ◽  
Jingjia Zhang ◽  
Ge Zhang ◽  
...  

ObjectivesThe performance of mainstream commercial antimicrobial susceptibility testing systems on polymyxins has not been well evaluated in China. In this study, three antimicrobial susceptibility testing systems were evaluated for polymyxin B and colistin.MethodsThe MICs of 257 Gram-negative strains collected from clinical cases and livestock were determined and analyzed. Using Broth Microdilution as the gold standard, the performance of VITEK 2® COMPACT, PhoenixTM M50, and Bio-kont AST System were evaluated. Essential agreement (EA), category agreement (CA), very major error (VME), and major error (ME) were calculated for comparison. The results of mcr-1 positive strains were separately discussed.ResultsThe EA, CA, VME, and ME to polymyxin B for Bio-kont were 83.5, 95.6, 13.1, and 0.6%, respectively. The EAs, CAs, VMEs, and MEs to colistin were as follows: Bio-kont, 86.7%/96.5%/7.2%/1.7%; Vitek 2, 64.2%/86.8%/41.0%/0%, and Phoenix M50, 92.9%/92.9%/21.7%/0%. The performance of Bio-kont to polymyxin B and colistin for Pseudomonas spp. (EA, CA &lt; 90%, VME &gt; 1.5%, ME = 5.6%/10%) and Enterobacter spp. (EA, CA &lt; 90%, VME &gt; 1.5% and ME = 0%), Vitek to colistin for most genera, and Phoenix to colistin for Enterobacter spp. (EA, CA &lt; 90%, VME &gt; 1.5%, ME = 0%) were unsatisfactory compared with other genera. The performance of Bio-kont to polymyxins for Escherichia spp. and Phoenix to colistin for Citrobacter spp., Escherichia spp., and Klebsiella spp., which all met the CLSI standard, were satisfactory. When the susceptibility of mcr-1 positive E. coli was tested, Bio-kont and Phoenix M50 presented excellent performance with no category errors, while Vitek 2 performed a high VME (25.5%).ConclusionWith relatively more accurate results for polymyxin B and colistin and lower VME, Bio-kont has an advantage in polymyxin antimicrobial susceptibility testing, especially for Escherichia spp., Klebsiella spp., Citrobacter spp. and Acinetobacter spp.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S383-S383
Author(s):  
Charma Henry ◽  
Dustin Evans ◽  
Daniel Navas ◽  
Arleen Barker ◽  
Chonnapat Somyos ◽  
...  

Abstract Background The national average of identification and susceptibility for organisms isolated from positive blood culture to final susceptibility based on growth on solid media is 48 hours. The goal of this research was to prove that the Vitek®2 (bioMérieux, Inc.) system can provide an accurate and reliable susceptibility result directly from positive blood culture for Gram negative rods and reduce the turnaround time (TAT) from positive blood culture to the final susceptibility. Methods An FDA-modified validation procedure was performed on positive blood cultures directly from the bottle to the VITEK®2 System for susceptibility testing. The protocol tested and validated an aliquot of 50uL of blood directly from the positive bottle into 10 mL of saline (1:200). The solution was vortexed and 3mL were placed in the VITEK®2 test tube. This protocol was intended only for Gram negative rods using the AST-GN70, AST-GN81 & AST-GN801 cards. This protocol followed the CLSI M52 and M100 guidelines. Results 515 organisms from clinical blood culture samples from July 2018 to October 2019 were evaluated. Organisms included, but were not limited to: E. coli, K. pneumoniae, Enterobacter spp., and P. aeruginosa, Proteus spp., Salmonella spp., Acinetobacter spp., and S. maltophilia. There were 5,201 drug/bug combinations. AdventHealth Orlando achieved an essential agreement of 99.32% (n=5,166), minor error 0.74% (n=39) major error 0.02% (n=1) and very major error 0.49% (n=2). A 100% agreement was achieved on detection of ESBL, CRE, and MDR organisms. Conclusion Rapid direct blood culture protocol using the VITEK®2 System and the AST-GN cards is accurate, reliable and can be performed with less than 1 minute hands-on time. The protocol can be implemented in any laboratory at no additional costs or modification where the current VITEK®2 AST-GN panels are in use. This protocol was clinically implemented at AdventHealth Orlando on July 15, 2019. Compared with the national average of 72 hours, the TAT obtained during this study was 23 hours from positive blood culture to final susceptibility, a significant reduction of 25 hours. The authors encourage bioMérieux Inc. to evaluate and explore the opportunity to expand the use of the VITEK®2 system for this application with the appropriate clinical trial. Disclosures All Authors: No reported disclosures


Author(s):  
Kavipriya D. ◽  
Suman Susan Prakash ◽  
Sarumathi Dhandapani ◽  
Deepashree Rajshekar ◽  
Apurba Sankar Sastry

Abstract Background Timely initiation of antimicrobial therapy in patients with blood stream infection is absolutely necessary to reduce mortality and morbidity. Most clinical microbiology laboratories use conventional methods for identification and antimicrobial susceptibility testing (AST) that involve biochemical methods for identification followed by AST by disk diffusion. The aim of the current study is to assess the various errors associated with direct susceptibility testing done from blood culture broth using automated AST system-Vitek-2 compact compared with the reference method of AST done from bacterial colonies. Materials and Methods The study was conducted in a tertiary care public sector 2,200-bedded hospital in South India for a period of 6 months. The study involved positively flagged blood culture bottles that yielded single morphotype of Gram-negative organism by Gram stain. A total of 120 bacterial isolates were collected that consisted of consecutively obtained first 60 isolates of Enterobacteriaceae family (30 Escherichia coli and 30 Klebsiella pneumoniae) and consecutively obtained first 60 nonfermenters (30 Pseudomonas aeruginosa and 30 Acinetobacter baumannii). Vitek-2 AST was done from these 120 blood culture broth, following the protocol by Biomerieux, and results were obtained. Then, Vitek-2 was done from colonies (reference method) using appropriate panel for Enterobacteriaceae and nonfermenters, and results were obtained. Both the results were compared. Results Nonfermenters showed a better categorical agreement of 97.6%, as compared to Enterobacteriaceae, which showed 97%. Among Enterobacteriaceae, both E. coli and K. pneumoniae showed categorical agreement of 97% each. Conclusion The procedure of AST directly from blood culture broth represents a simple and effective technique that can reduce the turnaround time by 24 hours, which in turn benefits the clinician in appropriate utilization of antimicrobials for better patient care.


Sign in / Sign up

Export Citation Format

Share Document