scholarly journals Potential Allergenicity of Novel Proteins in Murine Models

2004 ◽  
Vol 87 (6) ◽  
pp. 1433-1440 ◽  
Author(s):  
Carmen D Westphal ◽  
Richard B Raybourne

Abstract Bioengineered crops represent an important advancement for farmers who want to avoid losses caused by insect infestations or adverse environmental conditions. However, the use of modern biotechnology has raised questions regarding the safety of bioengineered foods because of the potential allergenicity of proteins expressed by the newly introduced genes. Standard approaches for safety assessment of these foods are still evolving. Animal models have been suggested as a tool that could help evaluate the potential allergenicity of such compounds. Several investigators are developing animal models to evaluate novel proteins, but none of these have yet been validated. This article reviews the published murine models, rat and mouse in particular, and the different methods used to evaluate parameters related to allergy. It also addresses the factors involved in the development of a model. Finally, it raises some questions that should be considered by the international community so that financial and intellectual efforts can be addressed in a unified manner.

Author(s):  
L. V. Tashmatova ◽  
О. V. Mantseva ◽  
N. V. Gorbacheva

The basic moments of a process of obtaining apple tetraploids as donors of diploid gametes for apple breeding with polyploidy using are demonstrated. In industrial terms, triploids are of the greatest importance. The manifested effect of heterosis leads to the improvement of many characteristics - higher resistance to diseases, pests and adverse environmental conditions, greater autogamy than in diploids, less pronounced periodicity of fruiting, larger fruits and a convenient crown for harvesting. Triploids are developed as a result of crosses 2n × 3n or 2n × 4n. Tetraploids are necessary for more successful apple breeding with polyploidy using. For industry they are not of great importance but they are of interest as donors of diploid non-reduced gametes and allow to make the selection process more directional. One of the methods of experimental polyploidy is the induction of polyploids using mutagenes. The germs were treated with colchicines at concentrations 0.1% - 0.4% during 24 and 48 hours. According to the morphology the obtained plants were divided into five groups. Colchicine concentrations 0.3% and 0.4% during 48 hours of the treatment had a disastrous impact on the development of germs. As a result of the cytological analysis, tetraploids and chimeras were revealed, which were obtained from the seeds from the open pollination of Orlik and Svezhest (treatment variants – 0,1% colchicines solution and 24 and 48 hours of exposition), as well as from the seeds obtained as a result of the Svezhest × Bolotovskoye crossing. Tetraploids had a normal growth but they differed in large leaves, while chimeras were of low size with normal leaves and internodes.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1628 ◽  
Author(s):  
Stephen A. Goldstein ◽  
Susan R. Weiss

Middle East respiratory syndrome-associated coronavirus (MERS-CoV) has been a significant research focus since its discovery in 2012. Since 2012, 2,040 cases and 712 deaths have been recorded (as of August 11, 2017), representing a strikingly high case fatality rate of 36%. Over the last several years, MERS-CoV research has progressed in several parallel and complementary directions. This review will focus on three particular areas: the origins and evolution of MERS-CoV, the challenges and achievements in the development of MERS-CoV animal models, and our understanding of how novel proteins unique to MERS-CoV counter the host immune response. The origins of MERS-CoV, likely in African bats, are increasingly clear, although important questions remain about the establishment of dromedary camels as a reservoir seeding human outbreaks. Likewise, there have been important advances in the development of animal models, and both non-human primate and mouse models that seem to recapitulate human disease are now available. How MERS-CoV evades and inhibits the host innate immune response remains less clear. Although several studies have identified MERS-CoV proteins as innate immune antagonists, little of this work has been conducted using live virus under conditions of actual infection, but rather with ectopically expressed proteins. Accordingly, considerable space remains for major contributions to understanding unique ways in which MERS-CoV interacts with and modulates the host response. Collectively, these areas have seen significant advances over the last several years but continue to offer exciting opportunities for discovery.


1975 ◽  
Vol 19 (3) ◽  
pp. 301-304
Author(s):  
Ann E. Martin

The present study was conducted to investigate the effects of environmental conditions on visual workload. The environmental variables used were temperature, studied at levels of 45°F., WBGT, and 95°F., WBGT; and noise, studied at 83 dBA intermittent noise and 93 dBA continuous noise. Workload was defined as the amount of attention demanded from an operator as measured by performance decrement on a secondary task while performing a primary and secondary task simultaneously. The secondary task was reading random numbers, and the primary task was reading word lists. Significant differences (p<.05) were found between the control condition and all experimental conditions. The low temperature and high temperature-continuous noise conditions were significantly different from the other conditions. Noise and temperature were found to significantly increase workload (p<05).


2018 ◽  
Vol 2 ◽  
pp. 247054701880829 ◽  
Author(s):  
Keila Rebello ◽  
Luciana M. Moura ◽  
Walter H. L. Pinaya ◽  
Luis A. Rohde ◽  
João R. Sato

Default mode network (DMN) plays a central role in cognition and brain disorders. It has been shown that adverse environmental conditions impact neurodevelopment, but how these conditions impact in DMN maturation is still poorly understood. This article reviews representative neuroimaging functional studies addressing the interactions between DMN development and environmental factors, focusing on early life adversities, a critical period for brain changes. Studies focused on this period of life offer a special challenge: to disentangle the neurodevelopmental connectivity changes from those related to environmental conditions. We first summarized the literature on DMN maturation, providing an overview of both typical and atypical development patterns in childhood and early adolescence. Afterward, we focused on DMN changes associated with chronic exposure to environmental adversities during childhood. This summary suggests that changes in DMN development could be a potential allostatic neural feature associated with an embodiment of environmental circumstances. Finally, we discuss about some key methodological issues that should be considered in paradigms addressing environmental adversities and open questions for future investigations.


Sign in / Sign up

Export Citation Format

Share Document