scholarly journals Kinetic Spectrophotometric Determination of Ciprofloxacin in a Pharmaceutical Preparation

2010 ◽  
Vol 93 (2) ◽  
pp. 510-515 ◽  
Author(s):  
Serap Saglik Aslan ◽  
Betul Demir

Abstract Two kinetic spectrophotometric methods were developed for determination of ciprofloxacin (CIP) in a pharmaceutical preparation. The methods are based on oxidation of CIP with potassium permanganate in alkaline media and measurement of the enhancement in the absorbance of manganate ion at 603 nm by spectrophotometry. The calibration graphs were constructed using the initial rate and fixed time methods. The linearity range for concentrations of CIP was found to be 4.020.0 g/mL. The RSD values for intraday and interday precision were 0.050.50 and 0.070.63, respectively. The procedures were applied successfully for determination of CIP in commercial tablets. The results compared well with those from a reference HPLC method. The proposed methods can be recommended for routine analysis of CIP in QC laboratories.

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Ashraf M. Mahmoud

New rapid, sensitive, and accurate kinetic spectrophotometric methods were developed, for the first time, to determine omeprazole (OMZ) in its dosage forms. The methods were based on the formation of charge-transfer complexes with both iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The variables that affected the reactions were carefully studied and optimized. The formed complexes and the site of interaction were examined by UV/VIS, IR, and1H-NMR techniques, and computational molecular modeling. Under optimum conditions, the stoichiometry of the reactions between OMZ and the acceptors was found to be 1 : 1. The order of the reactions and the specific rate constants were determined. The thermodynamics of the complexes were computed and the mechanism of the reactions was postulated. The initial rate and fixed time methods were utilized for the determination of OMZ concentrations. The linear ranges for the proposed methods were 0.10–3.00 and 0.50–25.00   with the lowest LOD of 0.03 and 0.14   for iodine and DDQ, respectively. Analytical performance of the methods was statistically validated; RSD was <1.25% for the precision and <1.95% for the accuracy. The proposed methods were successfully applied to the analysis of OMZ in its dosage forms; the recovery was 98.91–100.32%  0.94–1.84, and was found to be comparable with that of reference method.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammed G. Abdel Wahed ◽  
Ragaa El Sheikh ◽  
Ayman A. Gouda ◽  
Sayed Abou Taleb

Simple, sensitive, and accurate kinetic spectrophotometric method was proposed for the determination of gemifloxacin mesylate (GMF) and moxifloxacin hydrochloride (MOX) in pure forms and pharmaceutical preparations (tablets). The method is based on coupling the studied drugs with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in the presence of alkaline borate buffer. Spectrophotometric measurement was achieved by recording the absorbance at 466 and 464 nm for GMF and MOX, respectively, after a fixed time of 20 and 15 min on a water bath adjusted at 70 ± 5°C for both drugs. The different experimental parameters affecting the development and stability of the color were carefully studied and optimized. The absorbance-concentration plots were linear over the ranges 0.5–8.0 and 2.0–12 μg mL−1for GMF and MOX, respectively. The limit of detection of the kinetic method was about 0.12 (2.47 × 10−7 M) and 0.36 (8.22 × 10−7 M) μg mL−1for GMF and MOX, respectively. The proposed methods have been applied and validated successfully with percentage relative standard deviation (RSD% ≤ 0.52) as precision and percentage relative error (RE% ≤ 1.33) as accuracy. The robustness of the proposed method was examined with recovery values that were 97.5–100.5 ± 1.3–1.9%. Statistical comparison of the results with the reference spectrophotometric methods shows excellent agreement and indicates no significant difference in accuracy or precision.


2021 ◽  
Author(s):  
Shaza Affas ◽  
Amir Alhaj Sakur

Abstract Background: simple, sensitive, free of organic solvents, kinetic spectrophotometric method has been developed for the determination of Clindamycin Hydrochloride, both in pure form and Capsules. Method used is based on reaction of Clindamycin with potassium iodide and potassium iodate in aqueous medium at (25 ±2 °c) to produce yellow colored tri iodide ions (I3-). the reaction is followed spectrophotometrically by measuring the absorbance at 350 nm wavelength during 40 minutes. Results: the effects of analytical parameters on reported kinetic methods were investigated. Under the optimized conditions, the initial rate and fixed time (at 10 min) methods were used for constructing the calibration graphs. The graphs were linear in concentration ranges 1-20 μg.ml-1 with limit of detection of 0.12 and 0.22 μg ml-1for the initial rate and fixed time methods, respectively. The results were satisfactory and the analytical performance for both methods was validated. Conclusion: The proposed methods have been applied to determine the components in capsules with an average recovery of 98.25% to 102.00% and the results are in good agreement with those found by the reference method.


2020 ◽  
Vol 16 (6) ◽  
pp. 670-686
Author(s):  
Habibur Rahman

Background: Potassium permanganate is a green and versatile industrial oxidizing agent. Due to its high oxidizing ability, it has received considerable attention and has been extensively used for many years for the synthesis, identification, and determination of inorganic and organic compounds. Objective: Potassium permanganate is one of the most applicable oxidants, which has been applied in a number of processes in several industries. Furthermore, it has been widely used in analytical pharmacy to develop analytical methods for pharmaceutically active compounds using chemiluminescence and spectrophotometric techniques. Results: This review covers the importance of potassium permanganate over other common oxidants used in pharmaceuticals and reported its extensive use and analytical applications using direct, indirect and kinetic spectrophotometric methods in different pharmaceutical formulations and biological samples. Chemiluminescent applications of potassium permanganate in the analyses of pharmaceuticals using flow and sequential injection techniques are also discussed. Conclusion: This review summarizes the extensive use of potassium permanganate as a chromogenic and chemiluminescent reagent in the analyses of pharmaceutically active compounds to develop spectrophotometric and chemiluminescence methods since 2000.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Mahmoud A. Omar ◽  
Osama H. Abdelmageed ◽  
Tamer Z. Attia

A simple, reliable, and sensitive kinetic spectrophotometric method was developed for determination of eight cephalosporin antibiotics, namely, Cefotaxime sodium, Cephapirin sodium, Cephradine dihydrate, Cephalexin monohydrate, Ceftazidime pentahydrate, Cefazoline sodium, Ceftriaxone sodium, and Cefuroxime sodium. The method depends on oxidation of each of studied drugs with alkaline potassium permanganate. The reaction is followed spectrophotometrically by measuring the rate of change of absorbance at 610 nm. The initial rate and fixed time (at 3 minutes) methods are utilized for construction of calibration graphs to determine the concentration of the studied drugs. The calibration graphs are linear in the concentration ranges 5–15 g  and 5–25 g  using the initial rate and fixed time methods, respectively. The results are validated statistically and checked through recovery studies. The method has been successfully applied for the determination of the studied cephalosporins in commercial dosage forms. Statistical comparisons of the results with the reference methods show the excellent agreement and indicate no significant difference in accuracy and precision.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Nahla A Alassaf ◽  
Azhar S Hamody ◽  
Sarmad B Dikran1 ◽  
Faeza H Zankanah2

Simple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride(TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 µg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in itscommercial formulations.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Shaza Affas ◽  
Amir Alhaj Sakur

Abstract Background simple, sensitive, free of organic solvents, kinetic spectrophotometric method has been developed for the determination of Clindamycin Hydrochloride, both in pure form and Capsules. Method is based on reaction of Clindamycin with potassium iodide and potassium iodate in an aqueous medium at (25 ± 2 °C) to produce yellow-coloured tri iodide ions (I3−). The reaction is followed spectrophotometrically by measuring the absorbance at wavelength 350 nm during 40 min. Results the effects of analytical parameters on reported kinetic methods were investigated. Under the optimized conditions, the initial rate and fixed time (at 10 min) methods were used for constructing the calibration graphs. The graphs were linear in concentration ranges 1–20 μg ml−1 with limit of detection of 0.12 and 0.22 μg ml−1for the initial rate and fixed time methods, respectively. The results were satisfactory and the analytical performance for both methods was validated. Conclusion The proposed methods have been applied to determine the components in capsules with an average recovery of 98.25–102.00% and the results are in good agreement with those found by the reference method.


Author(s):  
MARWA K. A. L. JAMAL

Objective: Development and validation of a sensitive, indirect spectrophotometric kinetic method, based on oxidation-reduction reaction, using potassium permanganate, for the quantitative assay of pitavastatin calcium, a cardiovascular drug used for the treatment of hyperlipidemia. Methods: The developed spectrophotometric kinetic method is based on the ability of potassium permanganate to oxidize Pitavastatin, where, the drug solution is treated with a fixed concentration of permanganate in acidic medium, and after a specified time, the unreacted permanganate is measured at 525 nm. All variables affecting the color development have been investigated and the conditions were optimized. Different kinetic methods, including initial rate, rate constant, fixed time and fixed concentration, were applied for the determination Pitavastatin. Results: During the course of the reaction, the absorbance values, at 525 nm, related to KMnO4, decreased linearly with increasing the concentration of the drug. The reaction rate obeyed was found to be pseudo-first-order and the kinetic method used was the fixed-time method. The assay of PITA in the concentration range of 16-80 μg/ml, using the fixed time method was successfully determined with a correlation coefficient value of 0.9999. The applicability of the developed method was also demonstrated by the determination of pitavastatin in its pure form and in its pharmaceutical formulation, where, the effect of excipients has also been studied and found to have no effect. Conclusion: The developed indirect spectrophotometric kinetic method, using the fixed time method, was used for the determination of Pitavastatin in pharmaceutical tablets. This method was simple, accurate and easy to apply for routine assay and in quality control laboratories.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Joytosh Banerjee ◽  
Renu Solanki ◽  
Badri Prakash Nagori

Two simple and sensitive spectrophotometric methods have been developed for the determination of eperisone hydrochloride based on its ability to be detected in UV region (Normal UV) and its oxidation using potassium permanganate in alkaline medium (kinetic spectroscopic). The detection was done at 261.40 nm and 603.5 nm. The different experimental parameters affecting the method development were studied and optimized. The initial rate and fixed time method were utilized to construct calibration graph, and 5 minutes and 3 minutes, respectively, were found suitable for the determination of the concentration of drug. Linearity was found over the concentration range of 2–20 μg/mL, 15–30 μg/mL, and 15–35 μg/mL by UV, initial rate, and fixed time methods, respectively. The results were validated as per the ICH guidelines. RSD values were found to be less than 2%. The methods were applied for estimation of eperisone hydrochloride in RAPISONE (Abbott, Maharashtra). The assay results were found to be 100.4% ± 0.08, 99.93% ± 0.05, and 99.41% ± 0.04 by UV, initial rate, and fixed time method, respectively. Statistical comparison of the proposed methods showed a good agreement indicating no significant difference in accuracy and precision, thus confirming the suitability of UV and kinetic method for the estimation of eperisone hydrochloride in bulk as well as in tablet dosage forms.


2019 ◽  
Vol 15 (7) ◽  
pp. 752-768
Author(s):  
Naser A. Naser ◽  
Kasim M. Alasedi ◽  
Zainab A. Khan

Background: A new approach describing the validation and development of an easy, new spectrophotometric and kinetic method for identification of para-aminobenzoic acid in dietary supplement has been performed. In this study, para-aminobenzoic acid was derived in a pH-controlled environment, as a new organic compound 4(4-Benzophenylazo)pyrogallol, by incorporating diazotized para-aminobenzoic acid with pyrogallol. Objective: The determination of para-aminobenzoic acid was conducted by the fixed time and initial rate techniques. These approaches were based on the reaction of the compound containing paraaminobenzoic acid, 4(4-Benzophenylazo)pyrogallol, with Ag(I) to form colored product with a maximum absorbance at 468nm. Both of these techniques were adopted for constructing the calibration curves and examined for their suitability for the quantitation of para-aminobenzoic acid in dietary supplement. Methods: The determination process was established, using initial rate and fixed time kinetic spectrophotometric methods. Results: 4(4-Benzophenylazo)pyrogallol was characterized using proton-nuclear magnetic resonance, Fourier-transform infrared, differential scanning calorimetry and thermogravimetric thermal methods, gas chromatography–mass techniques, and solvatochromic behavior in solvents with different polarities was also examined. Conclusion: For the first time, para-aminobenzoic acid was well determined by incorporating it as an organic solid compound, 4(4-Benzophenylazo)pyrogallol, through coupling pyrogallol with diazotized para-aminobenzoic acid in regulated pH medium, ranging between 5.0 to 6.0. The existence of common excipients in the dietary supplement did not produce any significant interference. F- and ttest data analysis were used for statistical comparison of the suggested techniques with that of reference method, demonstrating excellent agreement with no significant difference in the associated precision and accuracy.


Sign in / Sign up

Export Citation Format

Share Document