scholarly journals Combined signature of rumen microbiome and metabolome in dairy cows with different feed intake levels

2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Yeqing Q Li ◽  
Yumeng M Xi ◽  
Zedong D Wang ◽  
Hanfang F Zeng ◽  
Zhaoyu Han

Abstract Feed intake is a major factor in maintaining the balance between ruminal fermentation and the microbial community of dairy cows. To explore the relationship among feed intake, microbial metabolism, and ruminal fermentation, we examined the combined signatures of the microbiome and metabolome in dairy cows with different feed intake levels. Eighteen dairy cows were allocated to high feed intake (HFI), medium feed intake (MFI), and low feed intake (LFI) groups according to their average daily feed intake. 16S rDNA sequencing results revealed that the relative abundance of Firmicutes in the HFI group was significantly higher than that in the MFI and LFI groups (P < 0.05). The ratio of Bacteroidetes to Firmicutes was significantly lower in the HFI group than in the MFI and LFI groups (P < 0.05). The relative abundance of Lachnospiraceae_unclassified, Veillonellaceae_unclassified, and Saccharofermentants was significantly higher in the HFI group than in the LFI and MFI groups (P < 0.05). The relative abundance of Erysipelotrichaceae_unclassified and Butyrivibrio was significantly higher in the HFI group than in the MFI and LFI groups (P < 0.05). Ultra high performance liquid chromatography-mass spectrometry revealed five key pathways, including the linoleic acid metabolism pathway, alpha-linolenic acid metabolism, arginine and proline metabolism, glutathione metabolism, and valine, leucine, and isoleucine biosynthesis, which are closely related to energy and amino acid metabolism. Linoleic acid, glutamate, alpha-linolenic acid, l-methionine, and l-valine levels were significantly lower in the HFI group than in the MFI and LFI groups (q < 0.05), while the relative content of glutamate was significantly lower in the MFI group than in the LFI group (q < 0.05). Stearic acid content was significantly higher in the HFI group than in the LFI group (q < 0.05). Our findings provide insight into the rumen microbiome of dairy cows with different feed intake and the metabolic pathways closely associated with feed intake in early-lactating cows. The candidates involved in these metabolic pathways may be useful for identifying variations in feed intake. The signatures of the rumen microbiome and metabolome in dairy cows may help make decisions regarding feeding.

2005 ◽  
Vol 85 (3) ◽  
pp. 413-416 ◽  
Author(s):  
F. B. Cavalieri ◽  
G. T. Santos ◽  
M. Matsushita ◽  
H. V. Petit ◽  
L. P. Rigolon ◽  
...  

Cows were fed whole flaxseed or calcium salts of soybean oil as a fat source. Cows fed flaxseed had lower (P < 0.01) milk yield and higher (P < 0.01) percentages of fat and protein than cows fed calcium salts. Feeding whole flaxseed and calcium salts of soybean oil increased, respectively, the concentrations of alpha-linolenic acid and conjugated linoleic acid in milk. Key words: Flaxseed, fatty acids, fat supplement


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 383
Author(s):  
Piaopiao Tan ◽  
Chaozhen Zeng ◽  
Chang Wan ◽  
Zhe Liu ◽  
Xujie Dong ◽  
...  

Brassica juncea has great application potential in phytoremediation of cadmium (Cd)-contaminated soil because of its excellent Cd accumulating and high biomass. In this study, we compared the effects of Cd under 48 h and 7 d stress in roots of Brassica juncea using metabolite profiling. The results showed that many metabolic pathways and metabolites in Brassica juncea roots were altered significantly in response to Cd stress. We found that significant differences in levels of amino acids, organic acids, carbohydrates, lipids, flavonoids, alkaloids, and indoles were induced by Cd stress at different times, which played a pivotal role in the adaptation of Brassica juncea roots to Cd stress. Meanwhile, Brassica juncea roots could resist 48 h Cd stress by regulating the biosynthesis of amino acids, linoleic acid metabolism, aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, ABC transporters, arginine biosynthesis, valine, leucine and isoleucine biosynthesis, and alpha-linolenic acid metabolism; however, they regulated alpha-linolenic acid metabolism, glycerophospholipid metabolism, ABC transporters, and linoleic acid metabolism to resist 7 d Cd stress. A metabolomic expedition to the response of Brassica juncea to Cd stress will help to comprehend its tolerance and accumulation mechanisms of Cd.


2021 ◽  
Author(s):  
Masoomeh Zeinalzadegan ◽  
Maryam Nejadmansouri ◽  
Mohammad-Taghi Golmakani ◽  
Gholam Reza Mesbahi ◽  
David Julian McClements ◽  
...  

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Sally A. V. Draycott ◽  
Ge Liu ◽  
Zoe C. Daniel ◽  
Matthew J. Elmes ◽  
Beverly S. Muhlhausler ◽  
...  

2008 ◽  
Vol 52 (No. 7) ◽  
pp. 203-213 ◽  
Author(s):  
D. Schneideroá ◽  
J. Zelenka ◽  
E. Mrkvicová

We studied the effect of different levels of linseed oils made either of the flax cultivar Atalante with a high content of &alpha;-linolenic acid (612 g/kg) or of the cultivar Lola with a predominating content of linoleic acid (708 g/kg) in a chicken diet upon the fatty acid pattern in meat. Cockerels Ross 308 were fed the diets containing 1, 3, 5 or 7 per cent of oil in the last 15 days of fattening. Breast meat (BM) and thigh meat (TM) without skin of 8 chickens from each dietary group were used for analyses. The relative proportions of fatty acids were expressed as percentages of total determined fatty acids. When feeding Atalante oil, the proportions of n-6 fatty acids were highly significantly lower while those of n-3 fatty acids were higher; the ratio of n-6/n-3 polyunsaturated fatty acids in meat was narrower (<i>P</i> < 0.001) than in chickens fed oil with a low content of &alpha;-linolenic acid. In BM and TM, the relative proportions of &alpha;-linolenic and &gamma;-linolenic acids were nearly the same, the proportion of linoleic acid in BM was lower, and the proportions of the other polyunsaturated fatty acids in BM were higher than in TM. In BM, the ratio of n-6/n-3 polyunsaturated fatty acids was significantly (<i>P</i> < 0.001) more favourable than that found in TM. The relative proportions of total saturated and monounsaturated fatty acids in meat decreased and those of polyunsaturated fatty acids increased significantly (<i>P</i> < 0.01) in dependence on the increasing level of dietary oils. When feeding Atalante oil, a significant increase in the proportion of linoleic acid in BM but not in TM was observed. The proportions of the other n-6 fatty acids decreased and those of all determined n-3 fatty acids, with the exception of docosahexaenoic acid, significantly increased with the increasing level of oil in the diet. When feeding Lola oil, its increasing content in the diet increased the relative proportion of linoleic acid as well as its elongation to &gamma;-linolenic acid; however, the proportions of arachidonic and adrenic acid did not change significantly (<i>P</i> > 0.05). The proportion of &alpha;-linolenic acid increased in both BM and TM. The proportion of eicosapentaenoic and clupanodonic acids in BM significantly decreased. The ratio of n-6 to n-3 polyunsaturated fatty acids ranged from 0.9 to 13.6 and from 1.0 to 17.2 in BM and TM, respectively. An increase in the level of Lola oil in the diet by 1% caused that the n-6/n-3 polyunsaturated fatty acid ratio extended by 1.00 and 1.19 units in BM and TM, respectively. Dependences of n-6/n-3 ratio on the level of Atalante oil were expressed by equations of convex parabolas with minima at the level of oil 5.8 and 5.9% for BM and TM, respectively. By means of the inclusion of linseed oil with a high content of &alpha;-linolenic acid in the feed mixture it would be possible to produce poultry meat as a functional food with a very narrow ratio of n-6/n-3 polyunsaturated fatty acids.


Sign in / Sign up

Export Citation Format

Share Document