PSVI-20 Updated Amino Acid, Choline, Betaine, Folic Acid, and Vitamin B12 Concentrations in Corn DDGS and Wheat

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 199-200
Author(s):  
Kari Estes ◽  
Zachary Lowman ◽  
Ryan N Dilger ◽  
Thomas Powell

Abstract Choline and water-soluble vitamins are essential nutrients for monogastric species. Choline is involved in cell structure and function making it a crucial nutrient in cognitive, cardiovascular and liver health. Additionally, choline along with methionine, betaine, folic acid and vitamin B12 are considered methyl donors and play important roles in DNA methylation. Choline deficiency symptoms can include fatty liver, neuromuscular issues, poor immune function and poor growth rates which can affect animal production profitability. While the Swine NRC (2012) has set forth dietary requirements, there is a lack of current information related to how the levels of methyl-containing compounds differ in varying ingredients. Improvements in analytical testing procedures, changes to the genetic makeup of crops, and current processing methods collectively influence nutrient concentrations in feedstuffs. The purpose of this project was to sample and analyze numerous samples of corn dried distiller grains with solubles (corn DDGS) and wheat collected in 2019 to permit quantification of choline and other methyl-containing compounds. Thirty-two corn DDGS samples and 23 wheat samples were collected from 12 states within the United States. Samples were then analyzed at Eurofins Scientific (Des Moines, IA) for dry matter, amino acid, choline, betaine, folic acid, and vitamin B12 concentrations. In general, corn DDGS exhibited lower analyzed methyl-containing nutrient concentrations when compared with wheat (Table 1). Methionine and folic acid contents of both ingredients were similar to those reported by the Swine NRC (2012). However, analyzed choline levels were 20% lower for corn DDGS and 18% higher for wheat than those reported by the Swine NRC. The lack of updated information related to choline and betaine in these two feedstuffs would suggest there may be inaccuracies in formulating diets to meet the requirements for optimal growth and health of pigs.

1981 ◽  
Vol 61 (6) ◽  
pp. 743-749 ◽  
Author(s):  
D. E. L. Wilcken ◽  
Vatsala J. Gupta ◽  
A. K. Betts

1. Homocysteine which is formed during the metabolism of methionine is readily oxidized and is measured by the amino acid analyser as cysteine—homocysteine mixed disulphide and homocystine. We measured plasma amino acid concentrations after an overnight fast in 27 stable long-term renal transplant recipients and 25 age-and sex-matched normal subjects with particular emphasis on sulphur-containing amino acids. 2. Plasma cysteine—homocysteine mixed disulphide was increased in the patients (mean 6.0 ± sd 3.2 μmol/l; normal 3.1 ± 0.9 μmol/l, P < 0.001) and homocystine was detectable in low concentration (< 1.0 μmol/l) in 24; the elevation in cysteine—homocysteine was related to serum creatinine (r = 0.60, P < 0.002). Cystine was also increased (91.6 ± 29.3 μmol/l; normal subjects 64.0 ± 16.7 μmol/l, P < 0.001), but methionine concentrations were normal. 3. When pyridoxine, folic acid and vitamin B12, cofactors for homocysteine metabolism, were administered sequentially to 11 arbitrarily selected transplant recipients cysteine—homocysteine decreased from 7.3 ± 2.1 to 4.3 ± 0.8 μmol/l (P < 0.001) and homocystine became undetectable. the response coincided with the giving of folic acid and occurred without alteration in serum creatinine and with normal serum folate and vitamin B12 concentrations. 4. in eight patients in whom pretreatment erythrocyte folate was measured, folic acid therapy reduced cysteine—homocysteine from 9.0 ± 3.1 to 5.4 ± 1.6 μmol/l over a 4 week period (P < 0.001), the largest response being in the one patient with subnormal erythrocyte folate; values were in the low-normal or normal range in the other seven. 5. We conclude that plasma homocysteine is increased in renal transplant recipients when serum creatinine is only moderately elevated and that the homocysteine concentrations are decreased by treatment with folic acid, suggesting that both reduced homocysteine excretion and relative shortages of folic acid are responsible.


2006 ◽  
Vol 59 (3-4) ◽  
pp. 143-147 ◽  
Author(s):  
Zoran Ceperkovic

Introduction. Homocysteine is a sulphur amino acid produced by demethylation of the essential amino acid methionine. Dysfunction of certain enzymes or insufficient intake of nutrients may cause increase of intracellular homocysteine, which is then exported into plasma. Etiopathogenesis of cardiovascular diseases accompanied with higher level of homocysteine. McCully's theory suggests that high levels of homocysteine are associated with cardiovascular diseases, arteriosclerosis and endothelial dysfunction. Harmful effects of homocysteine are associated with LDL cholesterol oxidation, increased production of collagen, lower availability of nitric oxide as well as prothrombotic activity. Reduction of homocysteine levels. The most recent researches show that hyperhomocysteinemia is responsible for about 10% of total risk of cardiovascular diseases. Vitamin BJ2 plays a major role in the remethylation of homocysteine. Reducing the homocysteine concentration in blood by 3 mol/l (with daily intake of 0.8 mg of folic acid) reduces the risk of ishemic heart diseases by 16%, vein thrombosis by 25%, and stroke by 24%. A six-month therapy with folic acid (Img/d), vitamin B12 (400g/d) and vitamin B6 (10mg/d), reduces the frequency of cardiovascular occurrences after successful PTCA. Plasma homocysteine concentration over 12/1 doubles the risk of myocardial infarction. Conclusion. A lack of folates, vitamin B6 and vitamin B12 increases the level of homocysteine and thus increases the risk of cardiovascular diseases. Changes in lifestyle and diet, as well as intake of food supplements, are of great importance in reducing homocysteine levels in plasma and therefore in reducing the occurrence and acceleration of arteriosclerosis. .


2018 ◽  
Vol 7 (8) ◽  
pp. 210 ◽  
Author(s):  
Yiying Zhang ◽  
Hongbin Qiu

To assess the association between intake of folate, vitamin B6, and vitamin B12 with hyperuricemia (HU) among adults from the United States (US), we extracted relevant data from 24,975 US adults aged 20–85 years from the National Health and Nutrition Examination Survey (NHANES) in 2001–2014. All dietary intake was evaluated by 24-h dietary recalls. Multivariable logistic regression analysis was performed to explore the associations after adjustment for confounders. Compared to the lowest quintile (Q1), for males, adjusted odds ratios (ORs) of HU in Q2 to Q5 of folate (dietary folate equivalent, DFE) intake were 0.84 (95% CI, 0.73–0.96), 0.84 (0.73–0.97), 0.72 (0.62–0.84), and 0.64 (0.53–0.77), respectively (p for trend <0.0001). In females, adjusted ORs in Q2 to Q4 of folate (DFE) intake were 0.84 (95% CI, 0.71–0.99), 0.81 (0.68–0.96), and 0.82 (0.68–0.99), with a p for trend of 0.1475. Our findings indicated the intakes of total folate, folic acid, food folate, folate (DFE), vitamin B12, but not vitamin B6, were inversely related to the risk of HU in males. A lower risk of HU with higher intakes of total folate, food folate, and folate (DFE) was found in females, but with no association between intakes of folic acid, vitamin B6, B12, and the risk of HU for females.


1951 ◽  
Vol 43 (4) ◽  
pp. 525-531 ◽  
Author(s):  
James S. Dinning ◽  
Lou Dewees Payne ◽  
Paul L. Day

2013 ◽  
Vol 53 (1) ◽  
pp. 1 ◽  
Author(s):  
W. H. E. J. van Wettere ◽  
R. J. Smits ◽  
P. E. Hughes

Maternal intake of B-vitamin and methyl donors can affect sow prolificacy. A total of 1079 Large White/Landrace sows (parities 2–9 at mating) were used in a 2 by 2 by 2 factorial design to determine the effects of two levels of betaine supplementation (0 versus 3 g added betaine/kg feed), two levels of folic acid plus vitamin B12 supplementation (0 versus 20 mg/kg folic acid plus 150 µg/kg vitamin B12) during gestation, and two parity groups (parity 2 and 3 versus parity 4 and greater) on litter size and pregnancy outcomes. The number of sows returning to oestrus post-insemination, as well as the number of early (<Day 30) and late (>Day 30) pregnancy losses were recorded. At farrowing, the total number of piglets born, the number of piglets born alive and dead, as well as the number of mummified fetuses were recorded. Pre-prandial blood samples were collected from a subset of 20 sows/treatment on Days 3, 30 and 107 of gestation to analyse homocysteine. The incidence of early pregnancy loss was reduced (P < 0.001) by folic acid plus vitamin B12 supplementation (0.03 versus 0.07). There was a significant interaction between parity at mating (parities 2 and 3 versus parity 4 and greater) and the addition of betaine or folic acid plus vitamin B12 to the gestation diet on litter size. Litter size was higher (0.5 piglets; P < 0.05) for betaine supplemented, compared with unsupplemented, parity 4 plus sows. Folic acid plus vitamin B12-supplemented parity 2 and 3 sows gave birth to more (P < 0.05) piglets than all other treatment groups. Folic acid plus vitamin B12 supplementation decreased (P < 0.001) plasma homocysteine concentration by 2.2 and 2.8 μM, respectively, on Days 3 and 107 of gestation. However, betaine supplementation decreased (P < 0.05) homocysteine on Day 3 only. Overall, folic acid plus vitamin B12 supplementation decreased incidences of early pregnancy failure and increased litter size in early parity sows, while betaine increased litter size in older parity sows.


1980 ◽  
Vol 44 (3) ◽  
pp. 361-369 ◽  
Author(s):  
Margaretha Jågerstad ◽  
B. Åkesson ◽  
C. Fehling

1. Hepatocytes isolated from vitamin B12-deficient and vitamin B12-supplemented rats were maintained in primary culture and were used to study the effect of methionine on the metabolism of [3H]folic acid and [5-14C]methyltetrahydrofolic acid.2. Vitamin B12 levels were reduced by approximately 75% in the hepatocytes from the deficient animals. Total folate and methyltetrahydrofolic acid concentrations were also significantly reduced.3. There was no significanct difference in the uptake and retention of added [3H[folic acid and [5-14C]-methyltetrahydrofolic acid between the hepatocytes of the two groups. The incorporation of 14C into phospholipids was reduced by approximately 60% in the vitamin B12-deficient hepatocytes (P < 0.001).4. The addition of methionine to the culture medium doubled the uptake and retention of 3H in both groups, but it did not change the amount of water-soluble 14C Compounds. In the vitamin B12-deficient hepatocytes mainly methylated folate increased, whereas non-methylated folate increased in the hepatocytes of the control animals. A tenfold increase of 14C incorporated into phospholipids was found in both groups after methionine was added.5. Demethylation of methyltetrahydrofolic acid, the intracellular retention of folate and the utilization of liberated methyl groups, for example in the methylation of phospholipids, were highest in the presence of both methionine and vitamin B12 suggesting an intimate co-ordination between these two substances in the regulation of folate metabolism.


Sign in / Sign up

Export Citation Format

Share Document