scholarly journals Bta-miR-34b regulates milk fat biosynthesis by targeting mRNA decapping enzyme 1A (DCP1A) in cultured bovine mammary epithelial cells1

2019 ◽  
Vol 97 (9) ◽  
pp. 3823-3831 ◽  
Author(s):  
Yujuan Wang ◽  
Wenli Guo ◽  
Keqiong Tang ◽  
Yaning Wang ◽  
Linsen Zan ◽  
...  

Abstract Milk fat is a main nutritional component of milk, and it has become one of the important traits of dairy cow breeding. Recently, there is increasing evidence that microRNAs (miRNA) play significant roles in the process of milk fat synthesis in the mammary gland. Primary bovine mammary epithelial cells (BMEC) were harvested from midlactation cows and cultured in DMEM/F-12 medium with 10% fetal bovine serum, 100 units/mL penicillin, 100 µg/mL streptomycin, 5 µg/mL bovine insulin, 1 µg/mL hydrocortisone, and 2 µg/mL bovine prolactin. We found that miR-34b mimic transfection in BMEC reduced the content of intracellular triacylglycerol (TAG) and lipid droplet accumulation via triacylglycerol assay and Oil Red O staining; meanwhile, overexpression of miR-34b inhibited mRNA expression of lipid metabolism-related genes such as peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4), and CCAAT enhancer binding protein alpha (C/EBPα). Whereas miR-34b inhibitor resulted in completely opposite results. Furthermore, q-PCR and western blot analysis revealed the mRNA and protein expression levels of DCP1A were downregulated in miR-34b mimic transfection group and upregulated in miR-34b inhibitor group. Moreover, luciferase reporter assays verified that DCP1A was the direct target of miR-34b and DCP1A gene silencing in BMEC-inhibited TAG accumulation and suppressed lipid droplet formation. In conclusion, these findings revealed a novel miR-34b–DCP1A axis that has a significant role in regulating milk fat synthesis and suggested that miR-34b may be used to improve the beneficial ingredients in milk.

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Gaoxiao Xu ◽  
Saixing Duan ◽  
Jianye Hou ◽  
Zhongxin Wei ◽  
Guangwei Zhao

It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), diacylglycerol acyltransferase 1 (DGAT1), perilipin 2 (PLIN2), perilipin 3 (PLIN3), and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPARγ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPARγ in mouse mammary glands.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1453
Author(s):  
Li Zhang ◽  
Zhang-Qing Wu ◽  
Yu-Juan Wang ◽  
Meng Wang ◽  
Wu-Cai Yang

Milk fat is the main nutritional component of milk and is also an important indicator for evaluating milk quality. Substantial evidence has implicated miRNAs in the synthesis of milk fat. miR-143 is one of the miRNAs closely related to lipid metabolism. Herein, miR-143 upregulation remarkably promoted the production of lipid droplets and increased the level of intracellular triglyceride (TAG). Meanwhile, miR-143 suppression overtly repressed TAG synthesis and lipid droplet accumulation in bovine mammary epithelial cells (BMECs). At the same time, miR-143 significantly upregulated the genes associated with lipid synthesis, including PPARγ, SCD1, CEBPβ, and SREBP1. To examine the regulatory mechanism of miR-143 in milk fat synthesis, Smad3 was predicted as a new potential miR-143 target gene by TargetScan. Further studies found that miR-143 expression was inversely related to the levels of Smad3 mRNA and protein. Furthermore, luciferase reporter assays confirmed Smad3 to be a miR-143 direct target. Moreover, Smad3 gene silencing significantly increased intracellular TAG level in BMECs. These findings revealed that miR-143 promotes the TAG synthesis in BMECs via increasing the lipid synthesis related gens expression by targeting Smad3. The results of this study can be exploited in devising novel approaches for improving the nutritional value of milk in dairy cows.


2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...


2017 ◽  
Vol 84 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Jung Nam Lee ◽  
Yong Wang ◽  
Ya Ou Xu ◽  
Yu Can Li ◽  
Fang Tian ◽  
...  

This research communication describes the profile of gene expression related to the synthesis of yak milk as determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). Significant up-regulation during lactation were observed in genes related to fatty acid (FA) uptake from blood (LPL, CD36), intracellular FA transport (FABP3), intracellular FA activation of long- and short-chain FAs (ACSS1, ACSS2, ACSL1), de novo synthesis (ACACA), desaturation (SCD), triacyglycerol (TAG) synthesis (AGPAT6, GPAM, LPIN1), lipid droplet formation (PLIN2, BTN1A1, XDH), ketone body utilisation (BDH1, OXCT1), and transcription regulation (THRSP, PPARGC1A). In particular, intracellular de novo FA synthesis (ACSS2, ACACA, and FABP3) and TAG synthesis (GPAM, AGPAT6, and LPIN1), whose regulation might be orchestrated as part of the gene network under the control of SERBF1 in the milk fat synthesis process, were more activated compared to levels in dairy cows. However, the genes involved in lipid droplet formation (PLIN2, XDH, and BTN1A1) were expressed at lower levels compared to those in dairy cows, where these genes are mainly controlled by the PPARG regulator.


2018 ◽  
Vol 46 (01) ◽  
pp. 107-118 ◽  
Author(s):  
Hwa-Jin Kim ◽  
Mi-Kyoung You ◽  
Ziyun Wang ◽  
Hyeon-A Kim

Obesity is the main risk factor for metabolic syndromes and there has been an upsurge in demand for effective therapeutic strategies. This study investigated the effect of red pepper seed water extract (RPS) on the process of differentiation in 3T3-L1 adipocytes. RPS treatment significantly suppressed cellular lipid accumulation and reduced the expression of adipocytes-associated proteins, peroxisome proliferator-activated receptor-[Formula: see text] (PPAR-[Formula: see text]), CCAAT/enhancer-binding proteins [Formula: see text] (C/EBP [Formula: see text]), sterol regulatory element binding protein-1c (SREBP-1c), as well as fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4). The inhibitory effect of RPS on differentiation was mainly through the modulation of the C/EBP [Formula: see text] and C/EBP [Formula: see text] expression at the early phase of differentiation. Moreover, at the early phase of differentiation, RPS markedly increased the phosphorylation of AMP-activated protein kinase (AMPK). Such enhancing effect of RPS was abolished in the presence of compound C. Our results suggest that activation of AMPK at early stage of adipogenesis is involved in the anti-adipogenesis effect of RPS.


2020 ◽  
Vol 11 (10) ◽  
pp. 8625-8636
Author(s):  
Zhi Chen ◽  
Shuangfeng Chu ◽  
Yusheng Liang ◽  
Tianle Xu ◽  
Yujia Sun ◽  
...  

Both mRNA and miRNA play an important role in the regulation of mammary fatty acid metabolism and milk fat synthesis.


2020 ◽  
Vol 87 (3) ◽  
pp. 349-355
Author(s):  
Xinyang Fan ◽  
Lihua Qiu ◽  
Xiaohong Teng ◽  
Yongyun Zhang ◽  
Yongwang Miao

AbstractWe hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, and INSIG1 gene were overexpressed and knocked down by constructing the recombinant lentivirus vector of INSIG1 gene and transfecting into BMECs. Results revealed that INSIG1 overexpression decreased the expression of INSIG2, SREBP, PPARG, SCD, GPAM, DGAT2 and AGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown of INSIG1 had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.


Sign in / Sign up

Export Citation Format

Share Document