scholarly journals Technical note: concentrations of soluble, insoluble, and total dietary fiber in feed ingredients determined using Method AOAC 991.43 are not different from values determined using Method AOAC 2011.43 with the AnkomTDF Dietary Fiber Analyzer

2019 ◽  
Vol 97 (9) ◽  
pp. 3972-3983 ◽  
Author(s):  
Nga Nguyen ◽  
Marc Jacobs ◽  
Juntao Li ◽  
Chengfei Huang ◽  
Defa Li ◽  
...  

AbstractThe primary objective of this experiment was to test the hypothesis that concentrations of soluble (SDF), insoluble (IDF), and total dietary fiber (TDF) in feed ingredients used in diets for pigs and poultry analyzed using Method AOAC 2011.25 are greater than values determined using Method AOAC 991.43. A second objective was to determine the variation that may exist among 3 laboratories using the 2 methods with the AnkomTDF Dietary Fiber Analyzer (Ankom Technology, Macedon, NY). The 3 laboratories were the Ministry of Agriculture Feed Industry Center (MAFIC) at China Agricultural University, Trouw Nutrition, and Hans H. Stein Monogastric Nutrition Laboratory at University of Illinois at Urbana-Champaign (UIUC). All laboratories analyzed SDF and IDF in feed ingredients in duplicate or triplicate using both methods AOAC 991.43 and 2011.25 with the AnkomTDF Dietary Fiber Analyzer. The 9 test ingredients were wheat, soybean meal, rapeseed meal, sugar beet pulp, peas, horse beans, native pea starch, and 2 samples of corn; 1 from Europe and 1 from China. All ingredient samples, with the exception of Chinese corn, were procured by Trouw Nutrition, ground to pass through a 0.5 mm screen, subsampled, and sent to MAFIC and UIUC. Data were analyzed using SDF, IDF, and TDF as response variables, replication as random effect, and method and location as fixed effects over all ingredients and within each ingredient. When averaged among 9 different ingredients, results indicated that SDF, IDF, and TDF values were not different with either method or at any laboratory. However, the concentration of IDF in corn, wheat, peas, and sugar beet pulp determined using Method AOAC 991.43 was greater (P < 0.05) compared with 2011.25. Soluble dietary fiber determined using Method AOAC 2011.25 was greater (P < 0.05) in corn, rapeseed meal, soybean meal, and sugar beet pulp compared with 991.43. There was no difference in TDF determined with either method, except for wheat having greater (P < 0.05) TDF when determined using Method AOAC 991.43. Interlaboratory variation for SDF, IDF, and TDF was 0.38, 0.87, 1.20, respectively, with Method AOAC 991.43 and 0.40, 0.93, and 1.27, respectively, with 2011.25. Therefore, values determined with the AnkomTDF Analyzer are repeatable among laboratories and can be used in feed formulation worldwide. In conclusion, it is recommended that Method AOAC 991.43 be used to determine SDF, IDF, and TDF in feed ingredients and diets for pigs and poultry.

2021 ◽  
Vol 13 (9) ◽  
pp. 5317
Author(s):  
Sonja Simić ◽  
Jovana Petrović ◽  
Dušan Rakić ◽  
Biljana Pajin ◽  
Ivana Lončarević ◽  
...  

Sugar beet pulp (SBP) is a by-product of the sugar industry in which the dietary fiber content ranges from 73% to 80%. Compared to cereal fibers mainly used in biscuit production, sugar beet fibers are gluten free and have a perfect ratio of 2/3 insoluble fiber. In this work, sugar beet pulp was extruded with corn grits (ratios of corn grits to sugar beet pulp in extrudates were 85:15, 70:30, and 55:45), and the obtained sugar beet pulp extrudates (SBPEs) were used for improving the nutritional quality of cookies. The wheat flour in cookies was replaced with SBPEs in the amount of 5, 10, and 15%. The influence of three factors (the percentage of sugar beet pulp in the SBPEs, the size of the SBPE particles, and the percentage of wheat flour substituted with SBPEs) and their interactions on the nutritional quality of cookies, as well as their physical and sensory characteristics are examined using the Box–Behnken experimental design. The addition of extruded sugar beet pulp (SBPEs) significantly increased the amount of total dietary fiber and mineral matter of cookies. On the whole, the addition of SBPEs increased cookie hardness, but the hardness decreased with an increase in extrudate particle size. Sensory characteristics (except for the taste) were the most influenced by extrudate particle size.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 412-412
Author(s):  
Dong Uk Ha ◽  
Beob Gyun G Kim

Abstract The objective was to determine the influence of feed intake (FI) and fiber source on hindgut disappearance of energy and nutrients in pigs. Ten canulated barrows with an initial body weight (BW) of 38.3 ± 5.4 kg were allotted to a replicated 5 × 4 Latin square design with 5 treatments and 4 periods. A corn-soybean meal-based basal diet (BD) and 2 × 2 factorial treatment arrangement with 2 amounts of FI (9.0 and 4.5% × BW0.75) and 2 fiber sources of sugar beet pulp (SBP) and corn cob were used. Three diets were 1) a BD, 2) a diet replacing 30% of corn and soybean meal in BD with SBP as a source of soluble dietary fiber (SDF), and 3) a diet replacing 15% of corn and soybean meal in BD with corn cobs as a source of insoluble dietary fiber (IDF) to obtain a similar IDF concentration as in the SBP diet. Each period consisted of 7-d adaptation, 2-d fecal collection, and 2-d ileal collection. Apparent ileal digestibility (AID) of energy, dry matter (DM), organic matter (OM), and crude protein (CP) in SBP diet was less (P &lt; 0.001) than that in corn cob diet, whereas AID of neutral detergent fiber in SBP were greater (P &lt; 0.001) than in corn cob diet. Hindgut disappearance of energy, DM, OM, neutral detergent fiber, and acid detergent fiber in SBP diet was greater (P &lt; 0.05) than that in corn cob diet. However, no interaction between FI and fiber source on the AID, apparent total tract digestibility, and hindgut disappearance of nutrients was observed. Overall, hindgut disappearance of nutrients in sugar beet pulp diet was greater than that in corn cob diet. However, the influence of feed intake or the interaction between feed intake and fiber source was not observed.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 411-412
Author(s):  
Dong Uk Ha ◽  
Beob Gyun G Kim

Abstract The objective was to determine the influence of feed intake (FI) and fiber source on the apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients in pigs. Twelve barrows with an initial body weight (BW) of 34.0 ± 2.6 kg were allotted to a replicated 6 × 4 Latin square design with 6 treatments and 4 periods. The 6 treatments were consisted of a 2 × 3 factorial arrangement with 2 amounts of FI (9.0 and 4.5% × BW0.75) and 3 dietary fiber sources. Three diets were 1) a corn-soybean meal-based basal diet (BD), 2) a diet replacing 30% of corn and soybean meal in BD with sugar beet pulp (SBP) as a source of soluble dietary fiber (SDF), and 3) a diet replacing 15% of corn and soybean meal in BD with corn cobs as a source of insoluble dietary fiber (IDF) to obtain a similar IDF concentration as in the SBP diet. Following a 6-d adaptation, feces were collected for 5 d. The ATTD of GE, dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) in diets was greater (P &lt; 0.05) for pigs fed at 4.5% of BW0.75 compared with those fed at 9.0% of BW0.75. The ATTD of GE, DM, OM, NDF, and ADF in SBP diet was greater (P &lt; 0.01) than that in corn cob diet. However, there was no interaction between FI and fiber source on energy and nutrient digestibility. The ATTD of GE, DM, OM, protein, NDF, and ADF in SBP was greater (P &lt; 0.01) than that in corn cobs. In conclusion, energy and nutrient digestibility values were increased by reduced feed intake and were greater in sugar beet pulp than in corn cobs without interaction between feed intake and fiber source.


1987 ◽  
Vol 59 (2) ◽  
pp. 101-120
Author(s):  
Pekka Huhtanen

Ten dairy cows in early lactation were given five different supplements with grass silage ad libitum according to two 5x5 Latin square designs. The supplements consisted of barley (Ba), unmolassed sugar beet pulp (SBP) and molasses (Mo) on dry matter (DM) basis as follows: (A) Ba 1000g, (B) Ba 667 g and Mo 326 g, (C) Ba 417 g, SBP 410 g and Mo 163 g, (D) SBP 983 g and (E) 656 g SBP and 326 g Mo per kg. The lower fat content of SBP and molasses than of Ba was balanced with rapeseed oil. These supplements were fed at the level of 6 kg DM/d. In addition, 1 kg of rapeseed meal was given as a protein supplement. No differences in silage DM intake between the Ba and SBP supplements were found, but inclusion of a high level of Mo depressed silage and total DM intake. Cows given SBP supplements yielded 1.1kg (P < 0.01) more milk and 32 g (P < 0.05) more protein than those given Ba supplements. Milk fat concentration was lower (P < 0.001) on SBP (46.0 g/kg) than on Ba diets (49.1 g/kg) and thus there was no difference in the yield of fat corrected milk(FCM) and milk fat between the two supplements. Inclusion of 2 kg of DM of More reduced the milk (P < 0.001), FCM, fat and protein yields (P < 0.01) compared to diets without molasses. Supplement C increased (P < 0.05) the milk yield compared to the other diets but the milk composition was not affected. The effect of supplements on the digestibility of the ration was determined using acid insoluble ash as a marker. The apparent digestibility of organic matter averaged 0.743 and was not significantly affected by the diet. Digestibility of neutral detergent fibre was higher (P < 0.001) for SBP diets (0.680) than for Ba diets (0.596). Similar differences were observed in the digestibility of other fibre components. However, the digestibility of the silage was not affected by the treatment. Feeding SBP diets resulted in lower (P < 0.001) digestibility of crude protein than did Ba diets. Metabolizable energy (ME) of SBP diets tended to be used more efficiently for milk synthesis than ME of Ba diets. Inclusion of Mo in Ba or SBP did not reduce the efficiency, although the milk yield was decreased. The passage rate of liquid was determined with CoEDTA and that of particles with Cr-labelled straw. The average mean retention time of liquid ranged from 18.0 to 19.9 h and that of particles from 36.8 to 37.7h. Neither time was affected by the treatment. The passage rate of particles from the rumen ranged from 0.045 to 0.048 and that of liquid from 0.096 to 0.104, irrespective of the diet.


2001 ◽  
Vol 2001 ◽  
pp. 113-113
Author(s):  
S.P Marsh ◽  
S.L Edmond ◽  
M. Witt

Intensively finished beef cattle have traditionally been fed rations based on rolled mineralised barley with a protein supplement such as soya bean or rapeseed meal. Since feed accounts for 75-85% of the variable costs of intensive beef production systems (MLC 1999) the use of alternative feeds that have a lower cost per unit of energy are worthy of investigation. The objective of this trial was to evaluate feeding pressed sugar beet pulp ensiled with dried maize distillers grains (Praize, Trident Feeds) on the performance of fast finishing continental cross weaned suckled bulls.


2015 ◽  
Vol 15 (2) ◽  
pp. 463-474 ◽  
Author(s):  
Subramaniam Mohana Devi ◽  
Jin Young Cheong ◽  
In Ho Kim

Abstract We assessed the possibly synergistic effects of dietary fiber (DF) and benzoic acid (BA) in growingfinishing pigs. In total, 96 growing pigs ([Landrace × Yorkshire] × Duroc) with an average initial body weight (BW) of 22.82 (±0.24) kg were selected and provided the dietary supplements based on their BW in a 2 × 2 factorial experiment, with the respective factors being fiber (low vs. high; 140 g/kg, 160 g/kg NSP, respectively) and BA (0, 5 g/kg benzoic acid) in six replicate pens consisting of four pigs per pen. Sugar beet pulp was used as a DF source, at 50 g/kg of the diet. All diets were formulated to contain 14.44 ME MJ/kg and 190 g/kg CP. This experiment was conducted to evaluate the growth performance, nutrient digestibility, and reduction of harmful gases and serum metabolites. There was no significant difference in feed intake and weight gains during treatments. Fiber levels and benzoic acid addition did not affect the dry matter, nitrogen and gross energy digestibility. Also, no interaction was found between fiber level and benzoic acid treatment. There was no difference in NH3, but RSH and H2S gases emissions show significant reduction with fiber and benzoic acid treatment. Serum metabolites, including lipoprotein and cholesterol, were also apparently unaffected by these treatments. Thus, the addition of 50 g sugar beet pulp per kg of growing feed as a DF source and the addition of BA had no significant impact on the growth performance of pigs during the growth period.


Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document