scholarly journals Evaluating Sugarcane Aphid, Melanaphis sacchari (Hemiptera: Aphididae), Population Dynamics, Feeding Injury, and Grain Yield Among Commercial Sorghum Varieties in Alabama

Author(s):  
Adrian J Pekarcik ◽  
Alana L Jacobson

Abstract The sugarcane aphid, Melanaphis sacchari (Zehntner), emerged as a severe pest of sorghum, Sorghum bicolor (L.), in Texas and Louisiana in 2013 and currently threatens nearly all sorghum production in the United States. Proper management of populations is critical as sugarcane aphid has a high reproductive potential and can rapidly damage plants, resulting in extensive yield losses. The overall objective of this work was to investigate sugarcane aphid population dynamics, and subsequent sorghum injury and grain yield on commercially available grain sorghum varieties in Alabama. This research includes three-site years of data that show variation in plant injury, physiological maturity, and yields among varieties tested. Although performance of each variety was variable among locations, potentially due to abiotic factors, four varieties including DKS 37-07, 1G588, 1G855, and 83P17 exhibited characteristics consistent with resistance and corroborates reports of resistance from other states.

2019 ◽  
Vol 112 (6) ◽  
pp. 2731-2736 ◽  
Author(s):  
Nicholas J Seiter ◽  
Anne D Miskelley ◽  
Gus M Lorenz ◽  
Neelendra K Joshi ◽  
Glenn E Studebaker ◽  
...  

Abstract The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), has become a major pest of grain sorghum, Sorghum bicolor (L.) Moench, in the United States in recent years. Feeding by large densities of sugarcane aphids causes severe damage, which can lead to a total loss of yield in extreme cases. Our objective was to determine the effect of grain sorghum planting date on sugarcane aphid population dynamics and their potential to reduce yields. We conducted field experiments from 2015 to 2017 in which an aphid-susceptible grain sorghum hybrid was planted at four different dates, which encompassed the typical range of planting dates used in Arkansas production systems. Plots were either protected from sugarcane aphid feeding using foliar insecticide sprays, or left untreated to allow natural populations of sugarcane aphids to colonize and reproduce freely. Planting date impacted both the magnitude and severity of sugarcane aphid infestations, with the highest population densities (and subsequent reductions in sorghum yield) generally occurring on plots that were planted in May or June. Sugarcane aphid feeding reduced yields in the untreated plots in two of the four planting date categories we tested. Earlier planting generally resulted in less sugarcane aphid damage and improved yields compared with later planting dates. While the effect of planting date on sugarcane aphid populations is likely to vary by region, sorghum producers should consider grain sorghum planting date as a potential cultural tactic to reduce the impact of sugarcane aphid.


2019 ◽  
Vol 112 (4) ◽  
pp. 1932-1940 ◽  
Author(s):  
Sulochana Paudyal ◽  
John Scott Armstrong ◽  
Kristopher L Giles ◽  
Mark E Payton ◽  
George P Opit ◽  
...  

Abstract The sugarcane aphid Melanaphis sacchari (Zehnter) (Hemiptera: Aphididae) has emerged as a potential threat to sorghum (Sorghum bicolor (L.) Moench) production in the United States. Since the late summer of 2013, finding and advancing M. sacchari-resistant germplasm has been a priority for all stakeholders involved. We evaluated 23 sorghum genotypes for resistance to the sugarcane aphid by testing for tolerance, and antixenosis. In addition, nine sorghum germplasm were evaluated for the expression of antibiosis. Free-choice and no-choice tests were conducted to explore the functional categories of resistance. Levels of resistance to M. sacchari were compared with the known resistant ‘TX 2783’ and the susceptible ‘KS 585’. Sorghum entries AG1201, AG1301, W844-E, and DKS 37-07 were identified as expressing tolerance, antibiosis, and antixenosis, while H13073 expressed antibiosis and GW1489 expressed both tolerance and antibiosis. These resistant sorghums identified during this study will have a significant impact on reducing economic damage from the sugarcane aphid infestations.


2021 ◽  
Author(s):  
Somashekhar Punnuri ◽  
Addissu Ayele ◽  
Karen Harris-Shultz ◽  
Joseph Knoll ◽  
Alisa Coffin ◽  
...  

Abstract Since 2013, the sugarcane aphid (SCA), Melanaphis sacchari (Zehntner), has been a serious pest that hampers all types of sorghum production in the U.S. Our understanding of sugarcane aphid resistance in sorghum is limited to knowledge about a few genetic regions on chromosome SBI-06. In this study, a subset of the Sorghum Association Panel (SAP) was used along with some additional lines to identify genetic and genomic regions that confer sugarcane aphid resistance. SAP lines were grown in the field and visually evaluated for SCA resistance during the growing seasons of 2019 and 2020 in Tifton, GA. In 2020, the SAP accessions were also evaluated for SCA resistance in the field using drone-based high throughput phenotyping (HTP) and visual scoring under greenhouse conditions. Plant height and flowering time were also recorded in the field to confirm that our methods were sufficient for identifying known quantitative trait loci (QTL). This study combined phenotypic data from field-based visual ratings, reflectance data, and greenhouse evaluations to identify genome-wide associated (GWAS) marker-trait associations (MTA) using genotyping-by-sequencing (GBS) data. Several MTAs were identified for sugarcane aphid-related traits across the genome, with a few common markers that were consistently identified on SBI-08 and SBI-10 for aphid count and plant damage as well as for reflectance indices-based traits on SBI-02, SBI-03, and SBI-05. Candidate genes encoding leucine-rich repeats (LRR), Avr proteins, lipoxygenases (LOXs), calmodulins (CAM) dependent protein kinase, WRKY transcription factors, flavonoid biosynthesis genes, and 12-oxo-phytodienoic acid reductase are identified near SNPs that had significant associations with different SCA traits. In this study, plant height and flowering time-related genes were also identified. The total phenotypic variation explained by significant SNPs across SCA-scored traits, plant height, and flowering time ranged from 0 to 74%, while the heritability value ranged from 4 to 74%. These results supported the existing literature, and also revealed several new loci. Markers identified in this study will support marker-assisted breeding for sugarcane aphid resistance.


2021 ◽  
Vol 56 (1) ◽  
pp. 43-52
Author(s):  
Karen Harris-Shultz ◽  
Xinzhi Ni

Abstract Since 2013, the sugarcane aphid, Melanaphis sacchari Zehntner, has been a perennial pest to U.S. sorghum, Sorghum bicolor (L.) Moench, production with yield declines in susceptible hybrids ranging from 50 to 100%. Previous studies have found that a single clonal genotype predominates in samples collected from sugarcane (Saccharum spp.), sorghum, and Johnsongrass (Sorghum halepense [L.] Persoon), from 2013 to 2017 in the continental United States. We sought to determine if the “super-clone” persists in sugarcane aphid samples collected in 2018 from five U.S. states and one territory and to identify the multilocus lineage of samples collected in 2018–2019 from a new host, giant miscanthus, Miscanthus sinensis× Miscanthus sacchariflorus Greef & Deuter ex Hodkinson & Renvoize. Thirty-one samples collected from Columbus grass (Sorghum almum Parodi), Johnsongrass, sorghum, and giant miscanthus in 2018 were genotyped using 9 simple sequence repeat markers; 29 samples had identical alleles to the multilocus lineage F super-clone. All samples (n = 7) collected from giant miscanthus in 2018–2019 also had identical alleles to the predominant genotype.


2019 ◽  
Vol 112 (6) ◽  
pp. 2719-2730 ◽  
Author(s):  
Phillip J Haar ◽  
G David Buntin ◽  
Alana Jacobson ◽  
Adrian Pekarcik ◽  
M O Way ◽  
...  

Abstract The invasive sugarcane aphid, Melanaphis sacchari (Zehntner), is a devastating new pest of grain sorghum. Studies were conducted utilizing an integrated approach of four management tactics: planting date, insecticidal seed treatment, a foliar-applied insecticide, and plant resistance. Experiments were conducted in 2016 and 2017 at Griffin, Tifton, and Plains Georgia, and in 2016 in Texas, Alabama, and Oklahoma, United States. Early planting was effective in reducing damage and increasing yields when compared to the late planting. Use of a resistant variety reduced cumulative aphid-days, plant injury and usually prevented significant yield loss. Foliar application of flupyradifurone when aphids reached an economic threshold, was an effective management tactic preventing aphid injury and yield loss. Use of clothianidin seed treatment also reduced aphid injury and yield loss of the susceptible hybrid but generally did not prevent injury and yield loss of the resistant hybrid. We conclude that an earlier planting date coupled with a resistant variety and judicious use of an efficacious foliar-applied insecticide can effectively manage sugarcane aphid on grain sorghum. An insecticide seed treatment also may be useful to reduce the risk of sugarcane aphid damage to seedlings of susceptible hybrids.


2015 ◽  
Vol 95 (6) ◽  
pp. 1205-1214 ◽  
Author(s):  
Edmore Gasura ◽  
Peter S. Setimela ◽  
Caleb M. Souta

Gasura, E., Setimela, P. S. and Souta, C. M. 2015. Evaluation of the performance of sorghum genotypes using GGE biplot. Can. J. Plant Sci. 95: 1205–1214. In spite of sorghum's drought tolerance, it is largely affected by genotype×environment interaction (GE), making it difficult and expensive to select and recommend new sorghum genotypes for different environments. The objectives of this study were to examine the nature of GE for sorghum grain yield, to identify superior sorghum genotypes for sorghum production environments and determine ideal testing locations for future breeding activities in Zimbabwe. The grain yield of 20 sorghum genotypes from Seed Co. Pvt. Ltd. were evaluated for 2 yr (2011/2012 and 2012/2013 cropping seasons) at five locations in different agro-ecological zones of Zimbabwe. Combined analyses of variance showed significant differences for genotypes (P<0.01), environments (P<0.001) and genotype×location (P<0.01). Genotype×environment variance component was seven times greater than that of genotypes. Genotype×environment interaction was attributed to the variability in the predictable biotic and abiotic factors associated with the different locations. The genotype main effect plus GE biplot showed that the experimental sorghum genotypes W07, W09, W05, G06 and OP46 were high yielding and stable, and possessed other desirable agronomic traits. The most discriminating and representative location was Rattray Arnold Research Station.


Author(s):  
Carlos Serratos Tejeda ◽  
Juan Morales Jiménez ◽  
Arturo Huerta de la Peña ◽  
José Hilario Hernández Salgado ◽  
Juan Antonio Villanueva Jiménez ◽  
...  

Objective: To evaluate the economic impact of sorghum aphid (Melanaphis sacchari)and the sorghum crop profitability in Western Puebla, Mexico, considering themanagement practices application-index (IAPM), related to the control practicessuggested by the State Plant Health Committee (CESAVEG).Design/Methodology/Approach: Data on socioeconomic aspects of the producer andthe production units were collected. The questionnaire was applied to producersaffiliated to PROAGRO. Results are shown using descriptive statistics.Results: The aphid infestation in sorghum had its most relevant effect on yield during2014-2016. Income obtained from sorghum sales is decreasing due to a downwardtrend in the purchase price per ton. After the arrival of M. sacchari the primary controlstrategy was to increase the number of insecticide applications, increasing productioncosts.Limitations of the study/implications: Since producers; incomes do not depend solely on sorghum production, the effect of the pest on their economy was relatively minor. Findings/Conclusions: The management practices application index indicates amoderate use of the recommended practices to manage this pest. The B/C ratiosuggests that even after the establishment of M. sacchari, sorghum is still a profitableactivity.


Sign in / Sign up

Export Citation Format

Share Document