Effects of Cantharidin and Norcantharidin on Larval Feeding and Adult Oviposition Preferences of the Diamondback Moth (Lepidoptera: Plutellidae)

2019 ◽  
Vol 112 (4) ◽  
pp. 1634-1637 ◽  
Author(s):  
Yi-fan Li ◽  
Hong Sun ◽  
Na Xi ◽  
Yalin Zhang

Abstract The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a destructive insect pest of cruciferous plants that has developed resistance to almost every listed commercial insecticide. Cantharidin as an animal-derived biopesticide is a natural defensive compound produced by Meloidae insects with toxicity to many insects including P. xylostella. Norcantharidin is an important substitute of cantharidin and has similar insecticidal activities to cantharidin. Although the toxicity of cantharidin and norcantharidin to P. xylostella has been reported, little research has focused on the effects of cantharidin or norcantharidin on the behavior of P. xylostella. In this study, we investigated the feeding behavior of third-instar larvae and the oviposition preference of adult P. xylostella in order to explore the effects of different concentrations of cantharidin and norcantharidin. Results show that cantharidin and norcantharidin have antifeedant effect on P. xylostella larvae. The values for AFC50 were 13.0228 and 149.4210 mg/ml, respectively. Furthermore, the oviposition deterrence rate of cantharidin on P. xylostella ranged from 49.37 to 58.24% and that of norcantharidin was from 20.88 to 33.33%. These results suggest cantharidin and norcantharidin may have repellent and antifeedant effect on P. xylostella, which could contribute toward using biopesticides to manage P. xylostella and may provide a new strategy for integrated pest management.

2016 ◽  
Vol 36 (04) ◽  
pp. 204-210 ◽  
Author(s):  
L. K. Agboyi ◽  
G. K. Ketoh ◽  
T. Martin ◽  
I. A. Glitho ◽  
M. Tamò

AbstractThe diamondback moth,Plutella xylostella(L.) is the major insect pest of cabbage crops in Togo and Benin. For control, farmers very often resort to spraying chemical insecticides at high dosages with frequent applications. Bioassays were carried out on three populations ofP. xylostella, two from Togo (Kara and Dapaong) and one from Benin (Cotonou), to assess their level of susceptibility to currently used insecticides. A reference strain ofP. xylostellafrom Matuu in Kenya was used as a control. In the laboratory, three insecticide representatives of different chemical families (deltamethrin, chlorpyrifos ethyl and spinosad) were assayed against third instar larvae ofP. xylostella. Results revealed thatP. xylostellapopulations from Dapaong, Kara and Cotonou were more resistant to deltamethrin (13 to 59-fold at LC50level, 149 to 1772-fold at LC90level) and chlorpyrifos ethyl (5 to 15-fold at LC50level, 9 to 885-fold at LC90level) than the reference strain. Spinosad was more toxic toP. xylostellapopulations than the other insecticides with LC50and LC90values less than 1 µg/ml and 15 µg/ml, respectively. However, the population from Cotonou appeared significantly more resistant to spinosad compared to the reference strain. These results are discussed in the light of developing an integrated pest management strategy for reducing the selection pressure of spinosad.


2017 ◽  
Vol 149 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Jatinder S. Sangha ◽  
Tess Astatkie ◽  
G. Christopher Cutler

AbstractAlternatives to synthetic insecticides are desirable for management of diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), an insect pest of global importance. Many essential oils derived from aromatic plants have demonstrated toxicity and behaviour altering effects on insect pests, and are considered low-risk alternatives to synthetic insecticides. We conducted laboratory experiments to determine the biological activity of several low-cost, commercially available essential oils against P. xylostella. Experiments testing ovicidal effects, larvicidal effects, larval feeding deterrence, and adult oviposition deterrence were done with essential oils derived from Artemisia abrotanum Linnaeus (Asteraceae), balsam fir (Abies balsamea Linnaeus (Pinaceae)), black pepper (Piper nigrum Linnaeus (Piperaceae)), eucalyptus (Eucalyptus polybractea (Baker) (Myrtaceae)), garlic (Allium sativum Linnaeus (Amaryllidaceae)), rosewood (a blend of different oil constituents), tansy (Tanacetum vulgare Linnaeus (Asteraceae)), and thyme (Thymus zygis Linnaeus (Lamiaceae)), using concentrations of 1, 2.5, and 5% v/v. Although all essential oils had some level of bioactivity against certain P. xylostella life stages, essential oils from garlic, rosewood, and thyme were most effective overall, demonstrating significant ovicidal and larvicidal activity, as well as deterrent effects on larval feeding and settling behaviour, and adult oviposition. Although variable phytotoxicity was observed with essential oils at 2.5% and 5% v/v concentrations, the results suggest that rosewood, garlic, and thyme essential oils have potential in management of P. xylostella.


2019 ◽  
Vol 29 (6) ◽  
pp. 788-794 ◽  
Author(s):  
Wenlei Guo ◽  
Li Feng ◽  
Dandan Wu ◽  
Chun Zhang ◽  
Xingshan Tian

Widespread herbicide-resistant weeds and severe insect pest infestations pose a challenge to the preplant pest management (PPPM) strategy currently in use in leaf vegetable fields in southern China. The aim of this study was to develop a new weed and insect control method for use before planting leaf vegetables in southern China. Two flaming machines (a tractor mounted and a trolley flaming machine) were designed, and their efficacies for the control of insect and weed pests were evaluated and compared in two field trials. With liquefied petroleum gas (LPG) at 101 kg·ha−1, flaming machines reduced plant numbers by 86.7% to 98.8% 2 days after treatment (DAT), which was equal to or higher than the reduction after application of paraquat at 900 g·ha−1. Some weed species, especially awnless barnyard grass (Echinochloa colona) and goosegrass (Eleusine indica), regrew at 7 DAT, resulting in a decrease in control efficacy. Flaming machines also reduced the number of diamondback moth (Plutella xylostella) larvae by 83.0% to 88.2% and the number of adult striped flea beetles (Phyllotreta striolata) by 64.9% to 80.9%. This is the first report on flaming treatment in China to show that this method is a promising alternative to chemical pesticides for PPPM in leaf vegetable fields.


2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
Thinley Jamtsho ◽  
Najitha Banu ◽  
Chimi Kinley

Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), has become the most destructive insect pest of Brassicaceae plants globally. Numerous control methods are available to control the moth, such as host plant resistance, physical controls, chemical controls, cultural controls, and biological controls. The continued application of insecticides has led to the development of resistance to almost 97 chemical compounds. The biological methods also became inefficient in the control of the moth. Therefore, nanotechnology would provide green and efficient alternatives for controlling the pest without harming environment. This review focuses on control methods used to manage diamondback moth and nanomaterials’ potential in insect pest management as modern nanotechnology approaches. It focuses on the past, present, and future scope of diamondback moth management


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


2017 ◽  
Vol 43 (2) ◽  
pp. 195
Author(s):  
Robson Thomaz Thuler ◽  
Fernando Henrique Iost Filho ◽  
Hamilton César De Oliveira Charlo ◽  
Sergio Antônio De Bortoli

Plant induced resistance is a tool for integrated pest management, aimed at increasing plant defense against stress, which is compatible with other techniques. Rhizobacteria act in the plant through metabolic changes and may have direct effects on plant-feeding insects. The objective of this study was to determine the effects of cabbage plants inoculated with rhizobacteria on the biology and behavior of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Cabbage seeds inoculated with 12 rhizobacteria strains were sowed in polystyrene trays and later transplanted into the greenhouse. The cabbage plants with sufficient size to support stress were then infested with diamondback moth caterpillars. Later, healthy leaves suffering injuries were collected and taken to the laboratory to feed P. xylostella second instar caterpillars that were evaluated for larval and pupal viability and duration, pupal weight, and sex ratio. The reduction of leaf area was then calculated as a measure of the amount of larval feeding. Non-preference for feeding and oviposition assays were also performed, by comparing the control treatment and plants inoculated with different rhizobacterial strains. Plants inoculated with the strains EN4 of Kluyvera ascorbata and HPF14 of Bacillus thuringiensis negatively affected the biological characteristics of P. xylostella when such traits were evaluated together, without directly affecting the insect behavior.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


Author(s):  
Lu-Lu Li ◽  
Ji-Wei Xu ◽  
Wei-Chen Yao ◽  
Hui-Hui Yang ◽  
Youssef Dewer ◽  
...  

Abstract The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes–SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242–were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.


Sign in / Sign up

Export Citation Format

Share Document