Chemosensory genes in the head of Spodoptera litura larvae

Author(s):  
Lu-Lu Li ◽  
Ji-Wei Xu ◽  
Wei-Chen Yao ◽  
Hui-Hui Yang ◽  
Youssef Dewer ◽  
...  

Abstract The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes–SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242–were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.

2016 ◽  
Vol 16 (1) ◽  
pp. 29 ◽  
Author(s):  
Suharsono Suharsono ◽  
M. Muchlish Adie

<p>The important<br />aspect of development of resistant plant to insect pest is source<br />of resistance. Study the resistance of 14 advance soybean<br />breeding lines to common cutworm Spodoptera litura F. was<br />conducted at the Laboratory of Crop Protection, Indonesian<br />Legumes and Tuber Crops Research Institute (ILETRI)<br />Malang in February-September, 2006. Leaf damage and larval<br />development on resistant genotypes was recorded to measure<br />the level of resistance. It was found that the susceptibility of<br />soybeans to the common cutworm significantly varied among<br />the breeding lines. The leaf damage of IAC-100, IAC 80-596-<br />2, and W/80-2-4-20 from larval feeding were 17.67, 18.52, and<br />23.70% respectively lower than Wilis variety with 35.57% of<br />leaf damage. These breeding lines consistently possess same<br />level of resistance to S. litura. In addition, the resistant<br />breeding lines affect on biological aspects i.e. prolonged<br />duration of larval stage, reduced larval and pupae gain weight,<br />and cause significant larval mortality compared with Wilis<br />variety. The study suggested that IAC-100, IAC 80-596-2, and<br />W/80-2-4-20 could be used as a source of resistance for S.<br />litura in breeding program.</p>


2019 ◽  
Vol 79 (01S) ◽  
Author(s):  
M. A. Saleem ◽  
G. K. Naidu ◽  
H. L. Nadaf ◽  
P. S. Tippannavar

Spodoptera litura an important insect pest of groundnut causes yield loss up to 71% in India. Though many effective chemicals are available to control Spodoptera, host plant resistance is the most desirable, economic and eco-friendly strategy. In the present study, groundnut mini core (184), recombinant inbred lines (318) and elite genotypes (44) were studied for their reaction to Spodoptera litura under hot spot location at Dharwad. Heritable component of variation existed for resistance to Spodoptera in groundnut mini core, recombinant inbred lines and elite genotypes indicating scope for selection of Spodoptera resistant genotypes. Only 29 (15%) genotypes belonging to hypogaea, fastigiata and hirsuta botanical varieties under mini core set, 15 transgressive segregants belonging to fastigiata botanical variety among 318 recombinant inbred lines and three genotypes belonging to hypogaea and fastigiata botanical varieties under elite genotypes showed resistance to Spodoptera litura with less than 10% leaf damage. Negative correlation existed between resistance to Spodoptera and days to 50 per cent flowering indicating late maturing nature of resistant genotypes. Eight resistant genotypes (ICG 862, ICG 928, ICG 76, ICG 2777, ICG 5016, ICG 12276, ICG 4412 and ICG 9905) under hypogaea botanical variety also had significantly higher pod yield. These diverse genotypes could serve as potential donors for incorporation of Spodoptera resistance in groundnut.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Ya-Wen Chang ◽  
Yu-Cheng Wang ◽  
Xiao-Xiang Zhang ◽  
Junaid Iqbal ◽  
Yu-Zhou Du

The leafminer fly, Liriomyza trifolii, is an invasive pest of vegetable and horticultural crops in China. In this study, a microinjection method based on dsRNA was developed for RNA interference (RNAi) in L. trifolii using genes encoding vacuolar-ATPase (V-ATPase). Expression analysis indicated that V-ATPase B and V-ATPase D were more highly expressed in L. trifolii adults than in larvae or pupae. Microinjection experiments with dsV-ATPase B and dsV-ATPase D were conducted to evaluate the efficacy of RNAi in L. trifolii adults. Expression analysis indicated that microinjection with 100 ng dsV-ATPase B or dsV-ATPase led to a significant reduction in V-ATPase transcripts as compared to that of the dsGFP control (dsRNA specific to green fluorescent protein). Furthermore, lower dsRNA concentrations were also effective in reducing the expression of target genes when delivered by microinjection. Mortality was significantly higher in dsV-ATPase B- and dsV-ATPase D-treated insects than in controls injected with dsGFP. The successful deployment of RNAi in L. trifolii will facilitate functional analyses of vital genes in this economically-important pest and may ultimately result in new control strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guilherme B. Dias ◽  
Musaad A. Altammami ◽  
Hamadttu A. F. El-Shafie ◽  
Fahad M. Alhoshani ◽  
Mohamed B. Al-Fageeh ◽  
...  

AbstractThe red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is an economically-important invasive species that attacks multiple species of palm trees around the world. A better understanding of gene content and function in R. ferrugineus has the potential to inform pest control strategies and thereby mitigate economic and biodiversity losses caused by this species. Using 10x Genomics linked-read sequencing, we produced a haplotype-resolved diploid genome assembly for R. ferrugineus from a single heterozygous individual with modest sequencing coverage ($$\sim$$ ∼ 62x). Benchmarking against conserved single-copy Arthropod orthologs suggests both pseudo-haplotypes in our R. ferrugineus genome assembly are highly complete with respect to gene content, and do not suffer from haplotype-induced duplication artifacts present in a recently published hybrid assembly for this species. Annotation of the larger pseudo-haplotype in our assembly provides evidence for 23,413 protein-coding loci in R. ferrugineus, including over 13,000 predicted proteins annotated with Gene Ontology terms and over 6000 loci independently supported by high-quality Iso-Seq transcriptomic data. Our assembly also includes 95% of R. ferrugineus chemosensory, detoxification and neuropeptide-related transcripts identified previously using RNA-seq transcriptomic data, and provides a platform for the molecular analysis of these and other functionally-relevant genes that can help guide management of this widespread insect pest.


2017 ◽  
Vol 108 (5) ◽  
pp. 658-666 ◽  
Author(s):  
X. Lin ◽  
Y. Jiang ◽  
L. Zhang ◽  
Y. Cai

AbstractSpodoptera litura is a widespread polyphagous insect pest that can develop resistance and cross-resistance to insecticides, making it difficult to control. Insecticide exposure has previously been linked with induction of specific olfactory-related proteins, including some chemosensory proteins (CSPs) and odorant-binding proteins (OPBs), which may disrupt detection of environmental factors and reduce fitness. However, functional evidence supporting insecticide and OBPs/CSPs mediation remains unknown. Here we fed male S. litura moths with sucrose water containing one of three insecticides, chlorpyrifos, emamectin benzoate or fipronil, and used real-time quantitative polymerase chain reaction and RNAi to investigate OBPs and CSPs expression and their correlations with survival. Chlorpyrifos and emamectin benzoate increased expression of 78% of OBPs, plus 63 and 56% of CSP genes, respectively, indicating a major impact on these gene families. RNAi knockdown of SlituCSP18, followed by feeding with chlorpyrifos or fipronil, decreased survival rates of male moths significantly compared with controls. Survival rate also decreased significantly with the downregulation of SlituOBP9 followed by feeding with chlorpyrifos. Thus, although these three insecticides had different effects on OBP and CSP gene expression, we hypothesize that SlituOBPs and SlituCSPs might mediate their effects by increasing their expression levels to improve survival. Moreover, the differential response of S. litura male moths to the three insecticides indicated the potential specificity of chlorpyrifos affect SlituCSP18 and SlituOBP9 expression.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Hyrum S. Eddington ◽  
Courtney Carroll ◽  
Randy T. Larsen ◽  
Brock R. McMillan ◽  
John M. Chaston

Abstract Background Mule deer rely on fat and protein stored prior to the winter season as an energy source during the winter months when other food sources are sparse. Since associated microorganisms (‘microbiota’) play a significant role in nutrient metabolism of their hosts, we predicted that variation in the microbiota might be associated with nutrient storage and overwintering in mule deer populations. To test this hypothesis we performed a 16S rRNA marker gene survey of fecal samples from two deer populations in the western United States before and after onset of winter. Results PERMANOVA analysis revealed the deer microbiota varied interactively with geography and season. Further, using metadata collected at the time of sampling, we were able to identify different fecal bacterial taxa that could potentially act as bioindicators of mule deer health outcomes. First, we identified the abundance of Collinsella (family: Coriobacteriaceae) reads as a possible predictor of poor overwintering outcomes for deer herds in multiple locations. Second, we showed that reads assigned to the Bacteroides and Mollicutes Order RF39 were both positively correlated with deer protein levels, leading to the idea that these sequences might be useful in predicting mule deer protein storage. Conclusions These analyses confirm that variation in the microbiota is associated with season-dependent health outcomes in mule deer, which may have useful implications for herd management strategies.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 92
Author(s):  
Dipendra Kumar Mahato ◽  
Sheetal Devi ◽  
Shikha Pandhi ◽  
Bharti Sharma ◽  
Kamlesh Kumar Maurya ◽  
...  

Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.


Sociobiology ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 5813
Author(s):  
Matan Shelomi ◽  
Bo-Jun Qiu ◽  
Lin-Ting Huang

An accumulation of questionable scientific reports on the use of natural plant extracts to control household pest insects, using biologically irrelevant experimental designs and extremely high concentrations, has resulted in a publication bias: “promising” studies claiming readily available plants can repel various insects, including social insects, despite no usable data to judge cost-effectiveness or sustainability in a realistic situation. The Internet provides a further torrent of untested claims, generating a background noise of misinformation. An example is the belief that cucumbers are “natural” ant repellent, widely reported in such informal literature, despite no direct evidence for or against this claim. We tested this popular assertion using peel extracts of cucumber and the related bitter melon as olfactory and gustatory repellents against ants. Extracts of both fruit peels in water, methanol, or hexane were statistically significant but effectively weak gustatory repellents. Aqueous cucumber peel extract has a significant but mild olfactory repellent effect: about half of the ants were repelled relative to none in a control. While the myth may have a grain of truth to it, as cucumber does have a mild but detectable effect on ants in an artificial setup, its potential impact on keeping ants out of a treated perimeter would be extremely short-lived and not cost-effective. Superior ant management strategies are currently available. The promotion of “natural” products must be rooted in scientific evidence of a successful and cost-effective implementation prospect.


2017 ◽  
Vol 9 (4) ◽  
pp. 1994-2003
Author(s):  
Hemant Sharma ◽  
Maha Singh Jaglan ◽  
S. S. Yadav

Biology of pink stem borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was conducted during 2015-16 in laboratories of CCS Haryana Agricultural University, Regional Research Station, Karnal on HQPM 1 (hybrid) and HKI 1128 (inbred) for two generations at room temperature. Results on biology of S. inferens in the first generation revealed that incubation period varied from 10-14 days on HQPM 1 and 11-15 days on HKI 1128. The larval duration lasted for 21-37 days on HQPM 1 and 24-39 days on HKI 1128. The adult longevity of male and female ranged from 6-7 days and 7-8 days on HQPM 1 and 5-7 days and 6-7 days on HKI 1128, respectively. The total life span ranged from 63-72 days for female and 45-58 days for male on HQPM 1 and 65-74 days for female and 49-62 days for male on HKI 1128, respectively in the first generation. The total life span in second generation ranged 94-107 days for female and 83-96 days for male on HQPM 1 and 98-112 days for female and 86-101 days for male on HKI 1128. The biology of an insect pest is a condition precedent to find out its management strategies. The biology of S. inferens on maize has not yet been studied in north western part of the country. Having regards to the fact that no systematic work on this aspect has been carried out, studies were conducted on biology of this pest for developing efficient pest management strategies.


Author(s):  
A. A. Oso ◽  
G. O. Awe

Aim: Information on the influence of water availability during different seasons of rainfed or irrigated agriculture as it relates to insect pest population build-up in crops could assist in the development of integrated pest management. A study was therefore conducted to investigate effects of spacing, pest infestation and control on cucumber under rainfed and irrigated conditions. Place and Duration of Study: At the Teaching and Research Farm, Ekiti State University, Ado Ekiti, Nigeria during the 2016/2017 rainy and dry seasons. Methodology: The experiment was laid out using randomized complete block design (RCBD) in a split-plot arrangement in five replications, with spacing (60 x 60 cm, 60 x 90 cm and 60 x 120 cm) as the main plot treatments and the sub-plot treatments were different pest control strategies. The pest control strategies include synthetic insecticide (Lambda-cyhalothrin), botanical insecticide (Anogeissus leiocarpus) and control. Growth parameters and yield attributes were recorded. Insect pest occurrence, their build-up and percentage infestation on cucumber and the efficacy of the management strategies were monitored. Results: The results showed that yield was enhanced in irrigated system with the widest spacing of 60 x 120 cm botanical treatment interaction. Bemisia tabaci was the most prominent insect pest attacking cucumber under irrigated system. Conclusion: Other cultural control practices such as the use of trap crops with little or no financial implication should also be added to botanical pesticides as an integrated pest management tactic for effective management and control of the pest.


Sign in / Sign up

Export Citation Format

Share Document