scholarly journals Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis

Author(s):  
Casey M Delphia ◽  
Kevin M O’Neill ◽  
Laura A Burkle

Abstract Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.

2020 ◽  
Vol 49 (3) ◽  
pp. 753-764 ◽  
Author(s):  
Ashley L St. Clair ◽  
Ge Zhang ◽  
Adam G Dolezal ◽  
Matthew E O’Neal ◽  
Amy L Toth

Abstract In the last century, a global transformation of Earth’s surface has occurred due to human activity with extensive agriculture replacing natural ecosystems. Concomitant declines in wild and managed bees are occurring, largely due to a lack of floral resources and inadequate nutrition, caused by conversion to monoculture-based farming. Diversified fruit and vegetable farms may provide an enhanced variety of resources through crops and weedy plants, which have potential to sustain human and bee nutrition. We hypothesized fruit and vegetable farms can enhance honey bee (Hymenoptera: Apidae, Apis mellifera Linnaeus) colony growth and nutritional state over a soybean monoculture, as well as support a more diverse wild bee community. We tracked honey bee colony growth, nutritional state, and wild bee abundance, richness, and diversity in both farm types. Honey bees kept at diversified farms had increased colony weight and preoverwintering nutritional state. Regardless of colony location, precipitous declines in colony weight occurred during autumn and thus colonies were not completely buffered from the stressors of living in a matrix dominated with monocultures. Contrary to our hypothesis, wild bee diversity was greater in soybean, specifically in August, a time when fields are in bloom. These differences were largely driven by four common bee species that performed well in soybean. Overall, these results suggest fruit and vegetable farms provide some benefits for honey bees; however, they do not benefit wild bee communities. Thus, incorporation of natural habitat, rather than diversified farming, in these landscapes, may be a better choice for wild bee conservation efforts.


Author(s):  
Ulrich Neumüller ◽  
Hannah Burger ◽  
Hans Richard Schwenninger ◽  
Sebastian Hopfenmüller ◽  
Sabrina Krausch ◽  
...  

AbstractFlower plantings can increase the abundance of bees and improve pollination services in the surrounding landscape. However, uncertainty remains as to whether flower plantings play a role in wild bee conservation. The aim of this study has been to examine the contribution of the composition and management of flower plantings to the attraction of bees, particularly of endangered species. In a large-scale monitoring project, wild bee data were collected on 60 flower plantings and 120 semi-natural reference plots in 20 study sites over 2 years. In total, we recorded 60,335 bees belonging to 351 species. In flower plantings, bee species richness and abundance were intricately linked to high plant richness and constant blooming throughout the season. In the first year of this study, a complimentary blooming phenology of annual and perennial plants resulted in a more constant bloom on flower plantings. In the second year, partial mowing of flower plantings mid-season enhanced floral resources during the late season. As a result, bee richness and abundance in flower plantings increased from the first to the second year. Nevertheless, the compositional heterogeneity of bees over all 20 sites in Germany did not increase from the first to the second year. We conclude that diverse and constant blooming throughout the season is the most important factor for promoting bees in flower plantings. To ensure sufficient beta diversity over a large spatial scale, we recommend the adjustment of seed mixtures according to the geographical region.


2021 ◽  
Author(s):  
Nicole Beyer ◽  
Felix Kirsch ◽  
Doreen Gabriel ◽  
Catrin Westphal

Abstract Context Pollinator declines and functional homogenization of farmland insect communities have been reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional trait compositions of wild bee communities is scarce. Objective We investigated how two morphologically different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). Methods We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were grown, paired with respective control landscapes without grain legumes. Results Faba bean cultivation promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Conclusions Our results show that MFC support specific functional bee groups adapted to their flower morphology and can alter pollinators` functional trait composition. We conclude that management practices need to target the cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to create heterogeneous landscapes, which sustain diverse pollinator communities.


2004 ◽  
Vol 36 (3) ◽  
pp. 657-673 ◽  
Author(s):  
Paul D. Mitchell

This paper explores the effect farmer perceptions concerning how best management practice (BMP) adoption changes the profit distribution have on BMP adoption incentives and the potential for insurance to increase these incentives. Adoption indifference curves illustrate the effect of farmer perceptions on BMP adoption incentives and the potential for insurance to expand the set of perceptions consistent with adoption. Empirical analysis quantifies these conceptual results for nutrient BMP insurance, a new policy available to corn farmers as part of a USDA-Risk Management Agency pilot program in four states. Results indicate that nutrient BMP insurance can have economically relevant effects on farmer adoption incentives.


2020 ◽  
Vol 49 (2) ◽  
pp. 502-515 ◽  
Author(s):  
Brianne Du Clos ◽  
Francis A Drummond ◽  
Cynthia S Loftin

Abstract Homogeneous, agriculturally intense landscapes have abundant records of pollinator community research, though similar studies in the forest-dominated, heterogeneous mixed-use landscape that dominates the northeastern United States are sparse. Trends of landscape effects on wild bees are consistent across homogeneous agricultural landscapes, whereas reported studies in the northeastern United States have not found this consistency. Additionally, the role of noncrop habitat in mixed-use landscapes is understudied. We assessed wild bee communities in the mixed-use lowbush blueberry (Vaccinium angustifolium Ait.) production landscape of Maine, United States at 56 sites in eight land cover types across two regional landscapes and analyzed effects of floral resources, landscape pattern, and spatial scale on bee abundance and species richness. Within survey sites, cover types with abundant floral resources, including lowbush blueberry fields and urban areas, promoted wild bee abundance and diversity. Cover types with few floral resources such as coniferous and deciduous/mixed forest reduced bee abundance and species richness. In the surrounding landscape, lowbush blueberry promoted bee abundance and diversity, while emergent wetland and forested land cover strongly decreased these measures. Our analysis of landscape configuration revealed that patch mixing can promote wild bee abundance and diversity; however, this was influenced by strong variation across our study landscape. More surveys at intra-regional scales may lead to better understanding of the influence of mixed-use landscapes on bee communities.


2019 ◽  
Vol 12 (1) ◽  
pp. 293 ◽  
Author(s):  
Monika Egerer ◽  
Jacob Cecala ◽  
Hamutahl Cohen

Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats.


2017 ◽  
Vol 8 (2) ◽  
pp. 267-271 ◽  
Author(s):  
A. I. de Castro ◽  
J. M. Peña ◽  
J. Torres-Sánchez ◽  
F. Jiménez-Brenes ◽  
F. López-Granados

In Spain, the use of annual cover crops is a crop management practice for irrigated vineyards that allows controlling vineyard vigor and yield, which also leads to improve the crop quality. Recently, Cynodon dactylon (bermudagrass) has been reported to infest those cover crops and colonize the grapevine rows, resulting in significant yield and economic losses due to the competition for water and nutrients. From timely unmanned aerial vehicle (UAV) imagery, the objective of this research was to map C. dactylon patches in order to provide an optimized site-specific weed management. A quadrocopter UAV equipped with a point-and-shoot camera was used to collect a set of aerial red-green-blue (RGB) images over a commercial vineyard plot, coinciding with the dormant period of C. dactylon (February 2016). Object-based image analysis (OBIA) techniques were used to develop an innovative algorithm for early discrimination and mapping of C. dactylon, which had the ability to solve the limitation of spectral similarity of this weed with cover crops or bare soil. As a general result, the classified maps of the studied vineyard showed four main classes, i.e. vine, cover crop, C. dactylon and bare soil, with 85% overall accuracy. These weed maps allow developing new strategies for site-specific control of C. dactylon populations in the context of precision viticulture.


2011 ◽  
Vol 101 (6) ◽  
pp. 623-631 ◽  
Author(s):  
D.J. Skirvin ◽  
L. Kravar-Garde ◽  
K. Reynolds ◽  
C. Wright ◽  
A. Mead

AbstractWithin-crop habitat manipulations have the potential to increase the biological control of pests in horticultural field crops. Wildflower strips have been shown to increase the abundance of natural enemies, but there is little evidence to date of an impact on pest populations. The aim of this study was to determine whether within-crop wildflower strips can increase the natural regulation of pests in horticultural field crops. Aphid numbers in plots of lettuce grown adjacent to wildflower strips were compared with those in plots grown in the absence of wildflowers. The presence of wildflower strips led to a decrease in aphid numbers on adjacent lettuce plants during June and July, but had less impact in August and September. The decrease in aphid numbers was greatest close to the wildflower strips and, the decrease in aphid numbers declined with increasing distance from the wildflower strips, with little effect at a distance of ten metres. The main natural enemies found in the crop were those that dispersed aerially, which is consistent with data from previous studies on cereal crops. Analysis and interpretation of natural enemy numbers was difficult due to low recovery of natural enemies, and the numbers appeared to follow changes in aphid abundance rather than being directly linked to the presence of wildflower strips. Cutting the wildflower strips, to remove floral resources, had no impact on the reduction in aphid numbers achieved during June and July, but decreased the effect of the wildflower strips during August and September. The results suggest that wildflower strips can lead to increased natural regulation of pest aphids in outdoor lettuce crops, but more research is required to determine how this is mediated by natural enemies and how the impact of wildflower strips on natural pest regulation changes during the growing season.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Dawn M. Olson ◽  
Jason Gibbs ◽  
Jason M. Schmidt
Keyword(s):  
Wild Bee ◽  

2021 ◽  
Author(s):  
savaş sarıözkan ◽  
Mehmet Küçükoflaz

Abstract Cystic echinococcosis (CE), is a neglected zoonotic parasitic disease among livestock diseases, that causes low productivity (meat, milk, fecundity), profitability and significant economic losses in water buffalo farms and serious public health problem all over the world. This study aimed at estimating the direct (condemned offal) and indirect (meat, milk, and fecundity losses) production losses due to cystic echinococcosis (CE) in water buffaloes in Turkey. A spreadsheet loss model was constructed, and the mean prevalence rate of CE was accepted as 16.4% (3.8% in males and 21.7% in females) in water buffaloes in Turkey. The annual financial losses were estimated with official and previously published data under expected (mean value), optimistic (lowered by 10%), and pessimistic (increased by 10%) scenarios with the prices current in 2020. The production losses in an infected male and female water buffalo were estimated at $54.3 and 105.3, respectively. The nation-wide losses due to CE were estimated at $1.7 million (1.4-2.1) for water buffaloes annually. In conclusion, farmers, policymakers, and the public need to be informed about the risks and financial impact of CE, and control/eradication programs should be included in policies of government at the national level after a cost/benefit analysis.


Sign in / Sign up

Export Citation Format

Share Document