scholarly journals Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change

Author(s):  
Rebekah A Oomen ◽  
Anna Kuparinen ◽  
Jeffrey A Hutchings

Abstract Genetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modeling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multilocus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.

2020 ◽  
Author(s):  
Rebekah A. Oomen ◽  
Anna Kuparinen ◽  
Jeffrey A. Hutchings

AbstractGenetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modelling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multi-locus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2644 ◽  
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

As part of a study into the molecular genetics of sexually dimorphic complex traits, we used next-generation sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics (https://zenodo.org/communities/sussex_drosophila_sequencing/).


2018 ◽  
Author(s):  
Maria Paniw

AbstractWith a growing number of long-term, individual-based data on natural populations available, it has become increasingly evident that environmental change affects populations through complex, simultaneously occurring demographic and evolutionary processes. Analyses of population-level responses to environmental change must therefore integrate demography and evolution into one coherent framework. Integral projection models (IPMs), which can relate genetic and phenotypic traits to demographic and population-level processes, offer a powerful approach for such integration. However, a rather artificial divide exists in how plant and animal population ecologists use IPMs. Here, I argue for the integration of the two sub-disciplines, particularly focusing on how plant ecologists can diversify their toolset to investigate selection pressures and eco-evolutionary dynamics in plant population models. I provide an overview of approaches that have applied IPMs for eco-evolutionary studies and discuss a potential future research agenda for plant population ecologists. Given an impending extinction crisis, a holistic look at the interacting processes mediating population persistence under environmental change is urgently needed.


2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


2019 ◽  
Author(s):  
Michael A. Martin ◽  
Drishti Kaul ◽  
Gene S. Tan ◽  
Christopher W. Woods ◽  
Katia Koelle

AbstractThe rapid evolution of influenza is an important contributing factor to its high worldwide incidence. The emergence and spread of genetic point mutations has been thoroughly studied both within populations and within individual hosts. In addition, influenza viruses are also known to generate genomic variation during their replication in the form of defective viral genomes (DVGs). These DVGs are formed by internal deletions in at least one gene segment that render them incapable of replication without the presence of wild-type virus. DVGs have previously been identified in natural human infections and may be associated with less severe clinical outcomes. These studies have not been able to address how DVG populations evolve in vivo in individual infections due to their cross-sectional design. Here we present an analysis of DVGs present in samples from two longitudinal influenza A H3N2 human challenge studies. We observe the generation of DVGs in almost all subjects. Although the genetic composition of DVG populations was highly variable, identical DVGs were observed both between multiple samples within single hosts as well as between hosts. Most likely due to stochastic effects, we did not observe clear instances of selection for specific DVGs or for shorter DVGs over the course of infection. Furthermore, DVG presence was not found to be associated with peak viral titer or peak symptom scores. Our analyses highlight the diversity of DVG populations within a host over the course of infection and the apparent role that genetic drift plays in their population dynamics.ImportanceThe evolution of influenza virus, in terms of single nucleotide variants and the reassortment of gene segments, has been studied in detail. However, influenza is known to generate defective viral genomes (DVGs) during replication, and little is known about how these genomes evolve both within hosts and at the population level. Studies in animal models have indicated that prophylactically or therapeutically administered DVGs can impact patterns of disease progression. However, the formation of naturally-occurring DVGs, their evolutionary dynamics, and their contribution to disease severity in human hosts is not well understood. Here, we identify the formation of de novo DVGs in samples from human challenge studies throughout the course of infection. We analyze their evolutionary trajectories, revealing the important role of genetic drift in shaping DVG populations during acute infections with well-adapted viral strains.


2019 ◽  
Vol 133 (3) ◽  
pp. 951-966 ◽  
Author(s):  
Maria Kyriakidou ◽  
Sai Reddy Achakkagari ◽  
José Héctor Gálvez López ◽  
Xinyi Zhu ◽  
Chen Yu Tang ◽  
...  

Abstract Key message Twelve potato accessions were selected to represent two principal views on potato taxonomy. The genomes were sequenced and analyzed for structural variation (copy number variation) against three published potato genomes. Abstract The common potato (Solanum tuberosum L.) is an important staple crop with a highly heterozygous and complex tetraploid genome. The other taxa of cultivated potato contain varying ploidy levels (2X–5X), and structural variations are common in the genomes of these species, likely contributing to the diversification or agronomic traits during domestication. Increased understanding of the genomes and genomic variation will aid in the exploration of novel agronomic traits. Thus, sequencing data from twelve potato landraces, representing the four ploidy levels, were used to identify structural genomic variation compared to the two currently available reference genomes, a double monoploid potato genome and a diploid inbred clone of S. chacoense. The results of a copy number variation analysis showed that in the majority of the genomes, while the number of deletions is greater than the number of duplications, the number of duplicated genes is greater than the number of deleted ones. Specific regions in the twelve potato genomes have a high density of CNV events. Further, the auxin-induced SAUR genes (involved in abiotic stress), disease resistance genes and the 2-oxoglutarate/Fe(II)-dependent oxygenase superfamily proteins, among others, had increased copy numbers in these sequenced genomes relative to the references.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2644 ◽  
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics (https://zenodo.org/communities/sussex_drosophila_sequencing/).


2017 ◽  
Vol 284 (1856) ◽  
pp. 20170516 ◽  
Author(s):  
J. Martínez-Padilla ◽  
A. Estrada ◽  
R. Early ◽  
F. Garcia-Gonzalez

Understanding and forecasting the effects of environmental change on wild populations requires knowledge on a critical question: do populations have the ability to evolve in response to that change? However, our knowledge on how evolution works in wild conditions under different environmental circumstances is extremely limited. We investigated how environmental variation influences the evolutionary potential of phenotypic traits. We used published data to collect or calculate 135 estimates of evolvability of morphological traits of European wild bird populations. We characterized the environmental favourability of each population throughout the species' breeding distribution. Our results suggest that the evolutionary potential of morphological traits decreases as environmental favourability becomes high or low. Strong environmental selection pressures and high intra-specific competition may reduce species' evolutionary potential in low- and high- favourability areas, respectively. This suggests that species may be least able to adapt to new climate conditions at their range margins and at the centre. Our results underscore the need to consider the evolutionary potential of populations when studying the drivers of species distributions, particularly when predicting the effects of environmental change. We discuss the utility of integrating evolutionary dynamics into a biogeographical perspective to understand how environmental variation shapes evolutionary patterns. This approach would also produce more reliable predictions about the effect of environmental change on population persistence and therefore on biodiversity.


Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 543-558
Author(s):  
Shai Slomka ◽  
Itamar Françoise ◽  
Gil Hornung ◽  
Omer Asraf ◽  
Tammy Biniashvili ◽  
...  

Tracing evolutionary processes that lead to fixation of genomic variation in wild bacterial populations is a prime challenge in molecular evolution. In particular, the relative contribution of horizontal gene transfer (HGT) vs.de novo mutations during adaptation to a new environment is poorly understood. To gain a better understanding of the dynamics of HGT and its effect on adaptation, we subjected several populations of competent Bacillus subtilis to a serial dilution evolution on a high-salt-containing medium, either with or without foreign DNA from diverse pre-adapted or naturally salt tolerant species. Following 504 generations of evolution, all populations improved growth yield on the medium. Sequencing of evolved populations revealed extensive acquisition of foreign DNA from close Bacillus donors but not from more remote donors. HGT occurred in bursts, whereby a single bacterial cell appears to have acquired dozens of fragments at once. In the largest burst, close to 2% of the genome has been replaced by HGT. Acquired segments tend to be clustered in integration hotspots. Other than HGT, genomes also acquired spontaneous mutations. Many of these mutations occurred within, and seem to alter, the sequence of flagellar proteins. Finally, we show that, while some HGT fragments could be neutral, others are adaptive and accelerate evolution.


Sign in / Sign up

Export Citation Format

Share Document