scholarly journals Evolvability meets biogeography: evolutionary potential decreases at high and low environmental favourability

2017 ◽  
Vol 284 (1856) ◽  
pp. 20170516 ◽  
Author(s):  
J. Martínez-Padilla ◽  
A. Estrada ◽  
R. Early ◽  
F. Garcia-Gonzalez

Understanding and forecasting the effects of environmental change on wild populations requires knowledge on a critical question: do populations have the ability to evolve in response to that change? However, our knowledge on how evolution works in wild conditions under different environmental circumstances is extremely limited. We investigated how environmental variation influences the evolutionary potential of phenotypic traits. We used published data to collect or calculate 135 estimates of evolvability of morphological traits of European wild bird populations. We characterized the environmental favourability of each population throughout the species' breeding distribution. Our results suggest that the evolutionary potential of morphological traits decreases as environmental favourability becomes high or low. Strong environmental selection pressures and high intra-specific competition may reduce species' evolutionary potential in low- and high- favourability areas, respectively. This suggests that species may be least able to adapt to new climate conditions at their range margins and at the centre. Our results underscore the need to consider the evolutionary potential of populations when studying the drivers of species distributions, particularly when predicting the effects of environmental change. We discuss the utility of integrating evolutionary dynamics into a biogeographical perspective to understand how environmental variation shapes evolutionary patterns. This approach would also produce more reliable predictions about the effect of environmental change on population persistence and therefore on biodiversity.

2018 ◽  
Author(s):  
Maria Paniw

AbstractWith a growing number of long-term, individual-based data on natural populations available, it has become increasingly evident that environmental change affects populations through complex, simultaneously occurring demographic and evolutionary processes. Analyses of population-level responses to environmental change must therefore integrate demography and evolution into one coherent framework. Integral projection models (IPMs), which can relate genetic and phenotypic traits to demographic and population-level processes, offer a powerful approach for such integration. However, a rather artificial divide exists in how plant and animal population ecologists use IPMs. Here, I argue for the integration of the two sub-disciplines, particularly focusing on how plant ecologists can diversify their toolset to investigate selection pressures and eco-evolutionary dynamics in plant population models. I provide an overview of approaches that have applied IPMs for eco-evolutionary studies and discuss a potential future research agenda for plant population ecologists. Given an impending extinction crisis, a holistic look at the interacting processes mediating population persistence under environmental change is urgently needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillermo Velo-Antón ◽  
André Lourenço ◽  
Pedro Galán ◽  
Alfredo Nicieza ◽  
Pedro Tarroso

AbstractExplicitly accounting for phenotypic differentiation together with environmental heterogeneity is crucial to understand the evolutionary dynamics in hybrid zones. Species showing intra-specific variation in phenotypic traits that meet across environmentally heterogeneous regions constitute excellent natural settings to study the role of phenotypic differentiation and environmental factors in shaping the spatial extent and patterns of admixture in hybrid zones. We studied three environmentally distinct contact zones where morphologically and reproductively divergent subspecies of Salamandra salamandra co-occur: the pueriparous S. s. bernardezi that is mostly parapatric to its three larviparous subspecies neighbours. We used a landscape genetics framework to: (i) characterise the spatial location and extent of each contact zone; (ii) assess patterns of introgression and hybridization between subspecies pairs; and (iii) examine the role of environmental heterogeneity in the evolutionary dynamics of hybrid zones. We found high levels of introgression between parity modes, and between distinct phenotypes, thus demonstrating the evolution to pueriparity alone or morphological differentiation do not lead to reproductive isolation between these highly divergent S. salamandra morphotypes. However, we detected substantial variation in patterns of hybridization across contact zones, being lower in the contact zone located on a topographically complex area. We highlight the importance of accounting for spatial environmental heterogeneity when studying evolutionary dynamics of hybrid zones.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1467-1483 ◽  
Author(s):  
David Houle ◽  
Bob Morikawa ◽  
Michael Lynch

Abstract We have reviewed the available data on VM, the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare VM values, we use three dimensionless quantities: mutational heritability, the mutational coefficient of variation, CVM; and the ratio of the standing genetic variance to VM, VG/VM. Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CVM. This is confirmed; life history traits have a median CVM value more than six times higher than that for morphological traits. VG/VM approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, VG/VM must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. VG/VM averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model.


2021 ◽  
Author(s):  
J.Z. Chen ◽  
D.M. Fowler ◽  
N. Tokuriki

SummaryThe fitness landscape, a function that maps genotypic and phenotypic changes to their effects on fitness, is an invaluable concept in evolutionary biochemistry. Though widely discussed, measurements of phenotype-fitness landscapes in proteins remain scarce. Here, we quantify all single mutational effects on fitness and phenotype (antibiotic resistance level) of VIM-2 β-lactamase (5600 variants) across a 64-fold range of ampicillin concentrations by deep mutational scanning. We then construct a phenotype-fitness landscape that takes variations in environmental selection pressure into account (a phenotype-environment-fitness landscape). We found that a simple, empirical landscape accurately models the ~39,000 mutational data points, which suggests the evolution of VIM-2 can be predicted based on the selection environment. Our landscape provides new quantitative knowledge on the evolution of the β-lactamases and proteins in general, particularly their evolutionary dynamics under sub-inhibitory antibiotic concentrations, as well as the mechanisms and environmental dependence of nonspecific epistasis.


2016 ◽  
Author(s):  
Eleanor K. O’Brien ◽  
Megan Higgie ◽  
Alan Reynolds ◽  
Ary A. Hoffmann ◽  
Jon R. Bridle

ABSTRACTPredicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species Distribution Models (SDMs) use the current relationship between environmental variation and species’ abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (1) that the relationship of environment with abundance or fitness is constant throughout a species’ range and will remain so in future, and (2) that abiotic factors (e.g. temperature, humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high altitude sites, and declined towards warmer, low altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high altitude than low altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (1) measuring genetic variation of key traits under ecologically relevant conditions, and (2) considering the effect of biotic interactions when predicting species’ responses to environmental change.


2020 ◽  
Author(s):  
Erica Nielsen ◽  
Romina Henriques ◽  
Maria Beger ◽  
Robert Toonen ◽  
Sophie von der Heyden

Abstract Background: As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). Results: Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. Conclusion: The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.


2020 ◽  
Author(s):  
Erica Nielsen ◽  
Romina Henriques ◽  
Maria Beger ◽  
Robert Toonen ◽  
Sophie von der Heyden

Abstract Background: As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare the dominant environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin ( Parechinus angulosus ), Common shore crab ( Cyclograpsus punctatu s), and Granular limpet ( Scutellastra granularis ). Results: Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus . Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus , but not for C. punctatus . Conclusion: The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses better predict evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.


2021 ◽  
pp. 329-340
Author(s):  
Anna Kuparinen

Contemporary evolution that occurs across ecologically relevant time scales, such as a few generations or decades, can not only change phenotypes but also feed back to demographic parameters and the dynamics of populations. This chapter presents a method to make phenotypic traits evolve in mechanistic individual-based simulations. The method is broadly applicable, as demonstrated through its applications to boreal forest adaptation to global warming, eco-evolutionary dynamics driven by fishing-induced selection in Atlantic cod, and the evolution of age at maturity in Atlantic salmon. The main message of this chapter is that there may be little reason to exclude phenotypic evolution in analyses of population dynamics, as these can be modified by evolutionary changes in life histories. Future challenges will be to integrate rapidly accumulating genomic knowledge and an ecosystem perspective to improve population projections and to better understand the drivers of population dynamics.


2005 ◽  
Vol 15 (11) ◽  
pp. 1619-1638 ◽  
Author(s):  
ROBERT A. GATENBY ◽  
THOMAS L. VINCENT ◽  
ROBERT J. GILLIES

We have previously demonstrated intra- and extra-cellular factors that govern somatic evolution of the malignant phenotype can be modeled through evolutionary game theory, a mathematical approach that analyzes phenotypic adaptation to in-vivo environmental selection forces. Here we examine the global evolutionary dynamics that control evolutionary dynamics explicitly addressing conflicting data and hypothesis regarding the relative importance of the mutator phenotype and microenvironment controls. We find evolution of invasive cancer follows a biphasic pattern. The first phase occurs within normal tissue, which possesses a remarkable adaptive landscape that permits non-competitive coexistence of multiple cellular populations but renders it vulnerable to invasion. When random genetic mutations produce a fitter phenotype, self-limited clonal expansion is observed — equivalent to a polyp or nevus. This step corresponds to tumor initiation in classical skin carcinogenesis experiments because the mutant population deforms the adaptive landscape resulting in the emergence of unoccupied fitness peaks — a premalignant configuration because, over time, extant cellular populations will tend to evolve toward available fitness maxima forming an invasive cancer. We demonstrate that this phase is governed by intracellular processes, such as the mutation rate, that promote phenotypic diversity and environmental factors that control cellular selection and population growth. These results provide an integrative model of carcinogenesis that incorporates cell-centric approaches such as the mutator phenotype hypothesis with the critical role of the environmental demonstrated by Bissell and others. The biphasic dynamics of carcinogenesis give a quantitative framework of understanding for the empirically observed initiation and promotion/progression stages in skin carcinogenesis experimental models.


2012 ◽  
Vol 279 (1744) ◽  
pp. 4015-4023 ◽  
Author(s):  
Fabrice Lagasse ◽  
Celine Moreno ◽  
Thomas Preat ◽  
Frederic Mery

Memory is a complex and dynamic process that is composed of different phases. Its evolution under natural selection probably depends on a balance between fitness benefits and costs. In Drosophila , two separate forms of consolidated memory phases can be generated experimentally: anaesthesia-resistant memory (ARM) and long-term memory (LTM). In recent years, several studies have focused on the differences between these long-lasting memory types and have found that, at the functional level, ARM and LTM are antagonistic. How this functional relationship will affect their evolutionary dynamics remains unknown. We selected for flies with either improved ARM or improved LTM over several generations, and found that flies selected specifically for improvement of one consolidated memory phase show reduced performance in the other memory phase. We also found that improved LTM was linked to decreased longevity in male flies but not in females. Conversely, males with improved ARM had increased longevity. We found no correlation between either improved ARM or LTM and other phenotypic traits. This is, to our knowledge, the first evidence of a symmetrical evolutionary trade-off between two memory phases for the same learning task. Such trade-offs may have an important impact on the evolution of cognitive capacities. On a neural level, these results support the hypothesis that mechanisms underlying these forms of consolidated memory are, to some degree, antagonistic.


Sign in / Sign up

Export Citation Format

Share Document