Genomic Approaches Identify Novel Gene Associations with Out of Season Lambing in Sheep

2019 ◽  
Vol 110 (5) ◽  
pp. 577-586 ◽  
Author(s):  
Christian J Posbergh ◽  
Michael L Thonney ◽  
Heather J Huson

Abstract Sheep are seasonally polyestrous, traditionally breeding when the day length shortens in the autumn. The changing photoperiod stimulates reproductive hormones through a series of chemical pathways, ultimately leading to cyclicity. Some breeds of sheep, such as the Polypay and Dorset, have been selected for reduced seasonality and can lamb year-round. Despite this selection, there is still variation within these breeds in the ability to lamb out of season. The identification of out of season lambing quantitative trait loci has the potential to improve genetic progress using genomic selection schemes. Association studies, fixation index (FST), and runs of homozygosity (ROH) were evaluated to identify regions of the genome that influence the ability of ewes to lamb out of season. All analyses used genotypic data from the Illumina Ovine HD beadchip. Genome-wide associations were tested both across breeds in 257 ewes and within the Dorset and Polypay breeds. FST was measured across breeds and between UK and US Dorsets to assess population differences. ROH were estimated in ewes to identify homozygous regions contributing to out of season lambing. Significant associations after multiple testing correction were found through these approaches, leading to the identification of several candidate genes for further study. Genes involved with eye development, reproductive hormones, and neuronal changes were identified as the most promising for influencing the ewe’s ability to lamb year-round. These candidate genes could be advantageous for selection for improved year-round lamb production and provide better insight into the complex regulation of seasonal reproduction.

2018 ◽  
Author(s):  
David M. Howard ◽  
Mark J. Adams ◽  
Toni-Kim Clarke ◽  
Jonathan D. Hafferty ◽  
Jude Gibson ◽  
...  

AbstractMajor depression is a debilitating psychiatric illness that is typically associated with low mood, anhedonia and a range of comorbidities. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant following multiple testing correction. Based on the putative genes associated with depression this work also highlights several potential drug repositioning opportunities. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding aetiology and developing new treatment approaches.


2021 ◽  
Author(s):  
Giulia Muzio ◽  
Leslie O'Bray ◽  
Laetitia Meng-Papaxanthos ◽  
Juliane Klatt ◽  
Karsten Borgwardt

While the search for associations between genetic markers and complex traits has discovered tens of thousands of trait-related genetic variants, the vast majority of these only explain a tiny fraction of observed phenotypic variation. One possible strategy to detect stronger associations is to aggregate the effects of several genetic markers and to test entire genes, pathways or (sub)networks of genes for association to a phenotype. The latter, network-based genome-wide association studies, in particular suffers from a huge search space and an inherent multiple testing problem. As a consequence, current approaches are either based on greedy feature selection, thereby risking that they miss relevant associations, and/or neglect doing a multiple testing correction, which can lead to an abundance of false positive findings. To address the shortcomings of current approaches of network-based genome-wide association studies, we propose <tt>networkGWAS</tt>, a computationally efficient and statistically sound approach to gene-based genome-wide association studies based on mixed models and neighborhood aggregation. It allows for population structure correction and for well-calibrated p-values, which we obtain through a block permutation scheme. <tt>networkGWAS</tt> successfully detects known or plausible associations on simulated rare variants from H. sapiens data as well as semi-simulated and real data with common variants from A. thaliana and enables the systematic combination of gene-based genome-wide association studies with biological network information.


2016 ◽  
Author(s):  
Brielin C. Brown ◽  
Alkes L. Price ◽  
Nikolaos A. Patsopoulos ◽  
Noah Zaitlen

AbstractThere is mounting evidence that complex human phenotypes are highly polygenic, with many loci harboring multiple causal variants, yet most genetic association studies examine each SNP in isolation. While this has lead to the discovery of thousands of disease associations, discovered variants account for only a small fraction of disease heritability. Alternative multi-SNP methods have been proposed, but issues such as multiple testing correction, sensitivity to genotyping error, and optimization for the underlying genetic architectures remain. Here we describe a local joint testing procedure, complete with multiple testing correction, that leverages a genetic phenomenon we call linkage masking wherein linkage disequilibrium between SNPs hides their signal under standard association methods. We show that local joint testing on the original Wellcome Trust Case Control Consortium dataset leads to the discovery of 29% more associated loci that were later found in followup studies containing thousands of additional individuals. These loci double the heritability explained by genome-wide significant associations in the WTCCC dataset, implicating linkage masking as a novel source of missing heritability. Furthermore, we show that local joint testing in a cis-eQTL study of the gEUVADIS dataset increases the number of genes discovered by 10.7% over marginal analyses. Our multiple hypothesis correction and joint testing framework are available in a python software package called jester, available at github.com/brielin/Jester.


2015 ◽  
Author(s):  
Sejal Patel ◽  
Min Tae M Park ◽  
Mallar M Chakravarty ◽  
Jo Knight

Imaging genetics is an emerging field in which the association between genes and neuroimaging-based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene Ontology, an online database, to select and prioritize certain genes, employing a stratified false discovery rate (sFDR) approach to investigate their associations with imaging phenotypes. sFDR has the potential to increase power in genome wide association studies (GWAS), and is quickly gaining traction as a method for multiple testing correction. Our novel approach addresses both the pressing need in genetic research to move beyond candidate gene studies, while not being overburdened with a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of hippocampal volume using the Alzheimer's Disease Neuroimaging Initiative sample.


2019 ◽  
Author(s):  
Asha M. Miles ◽  
Christian Posbergh ◽  
Heather Jay Huson

Abstract BACKGROUND The objective of our study was to conduct high-density genome-wide association studies of dairy cow udder and teat conformation with direct phenotyping. We identified and compared quantitative trait loci ( QTL ) for a novel composite mastitis risk trait and considered environmental impact of milking by comparing primiparous cows only. Cows (N = 471) were genotyped on the Illumina BovineHD 777K beadchip and scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Principal component analysis was performed on fore udder attachment, rear teat end shape, rear teat width, and rear udder height, to create a single new phenotype describing mastitis susceptibility based on these high-risk traits.RESULTS Over all 14 traits of interest, a total of 56 genome-wide associations were performed and 28 significantly associated (Bonferroni multiple testing correction < 0.05) QTL were identified. The linkage disequilibrium ( LD ) block surrounding the associated QTL or a 1 Mb window in the absence of LD was interrogated for candidate genes, resulting in the identification of genes with functions related to both cell proliferation and immune signaling, including ZNF683, DHX9, CUX1, TNNT1 , and SPRY1 . We assessed a primiparous only subset of cows (n = 144) to account for the possibility that the genetic variance component of the phenotype is greater for cows who have had less exposure to the environment, and observed different associated QTL and inheritance patterns for udder depth in primiparous cows compared to the total cohort.CONCLUSION Special focus was given to the aforementioned mastitis risk traits, and candidate gene investigation revealed both immune function and cell proliferation related genes in the areas surrounding significantly associated QTL, suggesting that selecting for mastitis resistant cows based on these traits would be an effective method for increasing mastitis resiliency in a herd.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sangyoon Yi ◽  
Xianyang Zhang ◽  
Lu Yang ◽  
Jinyan Huang ◽  
Yuanhang Liu ◽  
...  

AbstractOne challenge facing omics association studies is the loss of statistical power when adjusting for confounders and multiple testing. The traditional statistical procedure involves fitting a confounder-adjusted regression model for each omics feature, followed by multiple testing correction. Here we show that the traditional procedure is not optimal and present a new approach, 2dFDR, a two-dimensional false discovery rate control procedure, for powerful confounder adjustment in multiple testing. Through extensive evaluation, we demonstrate that 2dFDR is more powerful than the traditional procedure, and in the presence of strong confounding and weak signals, the power improvement could be more than 100%.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


2020 ◽  
Author(s):  
Yanjiao Jin ◽  
Jie Yang ◽  
Shuyue Zhang ◽  
Jin Li ◽  
Songlin Wang

Abstract Background: Oral diseases impact the majority of the world’s population. The following traits are common in oral inflammatory diseases: mouth ulcers, painful gums, bleeding gums, loose teeth, and toothache. Despite the prevalence of genome-wide association studies, the associations between these traits and common genomic variants, and whether pleiotropic loci are shared by some of these traits remain poorly understood. Methods: In this work, we conducted multi-trait joint analyses based on the summary statistics of genome-wide association studies of these five oral inflammatory traits from the UK Biobank, each of which is comprised of over 10,000 cases and over 300,000 controls. We estimated the genetic correlations between the five traits. We conducted fine-mapping and functional annotation based on multi-omics data to better understand the biological functions of the potential causal variants at each locus. To identify the pathways in which the candidate genes were mainly involved, we applied gene-set enrichment analysis, and further performed protein-protein interaction (PPI) analyses.Results: We identified 39 association signals that surpassed genome-wide significance, including three that were shared between two or more oral inflammatory traits, consistent with a strong correlation. Among these genome-wide significant loci, two were novel for both painful gums and toothache. We performed fine-mapping and identified causal variants at each novel locus. Further functional annotation based on multi-omics data suggested IL10 and IL12A/TRIM59 as potential candidate genes at the novel pleiotropic loci, respectively. Subsequent analyses of pathway enrichment and protein-protein interaction networks suggested the involvement of candidate genes at genome-wide significant loci in immune regulation.Conclusions: Our results highlighted the importance of immune regulation in the pathogenesis of oral inflammatory diseases. Some common immune-related pleiotropic loci or genetic variants are shared by multiple oral inflammatory traits. These findings will be beneficial for risk prediction, prevention, and therapy of oral inflammatory diseases.


2021 ◽  
Author(s):  
Dev Paudel ◽  
Rocheteau Dareus ◽  
Julia Rosenwald ◽  
Maria Munoz-Amatriain ◽  
Esteban Rios

Cowpea (Vigna unguiculata [L.] Walp., diploid, 2n = 22) is a major crop used as a protein source for human consumption as well as a quality feed for livestock. It is drought and heat tolerant and has been bred to develop varieties that are resilient to changing climates. Plant adaptation to new climates and their yield are strongly affected by flowering time. Therefore, understanding the genetic basis of flowering time is critical to advance cowpea breeding. The aim of this study was to perform genome-wide association studies (GWAS) to identify marker trait associations for flowering time in cowpea using single nucleotide polymorphism (SNP) markers. A total of 367 accessions from a cowpea mini-core collection were evaluated in Ft. Collins, CO in 2019 and 2020, and 292 accessions were evaluated in Citra, FL in 2018. These accessions were genotyped using the Cowpea iSelect Consortium Array that contained 51,128 SNPs. GWAS revealed seven reliable SNPs for flowering time that explained 8-12% of the phenotypic variance. Candidate genes including FT, GI, CRY2, LSH3, UGT87A2, LIF2, and HTA9 that are associated with flowering time were identified for the significant SNP markers. Further efforts to validate these loci will help to understand their role in flowering time in cowpea, and it could facilitate the transfer of some of this knowledge to other closely related legume species.


Sign in / Sign up

Export Citation Format

Share Document