scholarly journals Biological Control of Spotted-Wing Drosophila (Diptera: Drosophilidae)—Current and Pending Tactics

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jana C Lee ◽  
Xingeng Wang ◽  
Kent M Daane ◽  
Kim A Hoelmer ◽  
Rufus Isaacs ◽  
...  

Abstract Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is originally from Asia, and in the last decade it has become a global economic pest of small fruits and cherries. Growers have expressed strong interest in biological control and other sustainable tactics to reduce reliance on insecticides. Biological control of spotted-wing drosophila has been studied intensively, with over 75 research publications. Here, we are reporting current information on predators, parasitoids, pathogens (fungi, nematodes, bacteria, endosymbiotic bacteria, and viruses), and competitors of spotted-wing drosophila. When relevant for the natural enemy group, the discussion focuses on the impact each natural enemy has been observed to have in the field, how to optimize control, the efficacy of commercial products available, and options that may be available in the near future. Studies are summarized in tables that can be sorted by species, spotted-wing drosophila life stage targeted, outcomes, lab/field trials, and studies that examined residual activity, dose-dependent responses, or other effects.

2019 ◽  
Vol 112 (5) ◽  
pp. 2287-2294 ◽  
Author(s):  
Dominique N Ebbenga ◽  
Eric C Burkness ◽  
William D Hutchison

Abstract Spotted-wing drosophila, Drosophila suzukii (Matsumura), an economically damaging invasive species of numerous fruit crops, was first detected in Minnesota in 2012. High fecundity, and short generation times facilitated a rapid rise in the global pest status of D. suzukii, particularly in North America and Europe. To date, the majority of crop injury research has focused on fruit crops such as blueberries, raspberries, and cherries. However, little is known regarding the impact of D. suzukii on the wine grape industry in the upper Midwest region of the United States. Field trials were conducted in Minnesota during the summers of 2017–2018 to examine season-long phenology of D. suzukii in wine grape vineyards and wineries, and to assess the efficacy of exclusion netting for control of D. suzukii. Four treatments were evaluated, 1) open plot check (control), 2) open plot treated with an insecticide, 3) exclusion netting, and 4) exclusion netting, with artificial infestations of D. suzukii adults. Exclusion netting was applied at véraison and removed at harvest. On each sample date, 20 berries (10 intact and 10 injured) were collected from each plot for dissection. The number of larvae and adults were recorded for each berry to determine infestation levels. As shown by mean larval infestations and injured berries across treatments, exclusion netting provided a significant reduction in the level of D. suzukii infested berries when compared with the untreated check. These results indicate that exclusion netting could provide an effective alternative management strategy for D. suzukii in wine grapes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4534 ◽  
Author(s):  
Chi Zeng ◽  
Lingbing Wu ◽  
Yao Zhao ◽  
Yueli Yun ◽  
Yu Peng

Background Tea is one of the most economically important crops in China. However, the tea geometrid (Ectropis obliqua), a serious leaf-feeding pest, causes significant damage to tea crops and reduces tea yield and quality. Spiders are the most dominant predatory enemies in the tea plantation ecosystem, which makes them potentially useful biological control agents of E. obliqua. These highlight the need for alternative pest control measures. Our previous studies have shown that tea saponin (TS) exerts insecticidal activity against lepidopteran pests. Here, we investigate whether TS represents a potentially new alternative insecticide with no harm to spiders. Methods We investigated laboratory bioactivities and the field control properties of TS solution against E. obliqua. (i) A leaf-dip bioassay was used to evaluate the toxicity of TS to 3rd-instar E. obliqua larvae and effects of TS on the activities of enzymes glutathione-S-transferase (GST), acetylcholinesterase (AChE), carboxylesterase (CES) and peroxidase (POD) of 3rd-instar E. obliqua larvae in the laboratory. (ii) Topical application was used to measure the toxicity of 30% TS (w/v) and two chemical insecticides (10% bifenthrin EC and 50% diafenthiuron SC) to two species of spider, Ebrechtella tricuspidata and Evarcha albaria. (iii) Field trials were used to investigate the controlling efficacy of 30% TS against E. obliqua larvae and to classify the effect of TS to spiders in the tea plantation. Results The toxicity of TS to 3rd-instar E. obliqua larvae occurred in a dose-dependent manner and the LC50 was 164.32 mg/mL. Activities of the detoxifying-related enzymes, GST and POD, increased in 3rd-instar E. obliqua larvae, whereas AChE and CES were inhibited with time by treatment with TS. Mortalities of E. tricuspidata and E. albaria after 48 h with 30% TS treatment (16.67% and 20%, respectively) were significantly lower than those with 10% bifenthrin EC (80% and 73.33%, respectively) and 50% diafenthiuron EC (43.33% and 36.67%, respectively). The highest controlling efficacy of 30% TS was 77.02% at 5 d after treatment, which showed no difference to 10% bifenthrin EC or 50% diafenthiuron SC. 30% TS was placed in the class N (harmless or slightly harmful) of IOBC (International Organization of Biological Control) categories for natural enemies, namely spiders. Conclusions Our results indicate that TS is a botanical insecticide that has a good controlling efficacy in E. obliqua larvae, which suggests it has promise as application in the integrated pest management (IPM) envisaged for tea crops.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 536
Author(s):  
Matthew Gullickson ◽  
Claire Flavin Hodge ◽  
Adrian Hegeman ◽  
Mary Rogers

Due to concerns about frequent applications of spinosad and other broad spectrum insecticides for managing spotted-wing drosophila (Drosophila suzukii Matsumura, SWD), we investigated the use of essential oils as an alternative to current insecticides. Essential oils from a number of plant species have been studied for their attraction and deterrence of SWD. However, these botanical products have not been thoroughly tested in the field. We conducted laboratory and field studies to determine the efficacy of botanical products, including lavender (Lavandula angustifolia Mill.) oil, catnip (Nepeta cataria L.) oil, KeyPlex Ecotrol® PLUS, and KeyPlex Sporan® EC2 on preventing SWD infestation in raspberry (Rubus idaeus L.) and blueberry (Vacciniumcorymbosum L.) crops. In a two-choice laboratory bioassay, lavender oil, Ecotrol, and Sporan treatments deterred SWD from a yeast-cornmeal-sugar based fly diet. In the field trials, raspberry fruit treated with Ecotrol had lower SWD infestation (6%), compared to the control (17%), and was comparable to spinosad (6%). No differences were seen in blueberry infestation. The combination of essential oils in Ecotrol may work to decrease SWD fruit infestation under certain conditions in the field, however more research is needed on the longevity of these products.


Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 183 ◽  
Author(s):  
Svetlana Boycheva Woltering ◽  
Jörg Romeis ◽  
Jana Collatz

Trichopria drosophilae is a pupal parasitoid that can develop in a large number of drosophilid host species including the invasive pest Drosophila suzukii, and is considered a biological control agent. We investigated the influence of the rearing host on the preference and performance of the parasitoid, using two different strains of T. drosophilae, reared on D. melanogaster or D. suzukii for approximately 30 generations. Host switching was employed to assess the impact of host adaptation on T. drosophilae performance. In a no-choice experimental setup, T. drosophilae produced more and larger offspring on the D. suzukii host. When given a choice, T. drosophilae showed a preference towards D. suzukii, and an increased female ratio on this host compared to D. melanogaster and D. immigrans. The preference was independent from the rearing host and was confirmed in behavioral assays. However, the preference towards D. suzukii increased further after a host switch from D. melanogaster to D. suzukii in just one generation. Our data indicate that rearing T. drosophilae for several years on D. melanogaster does not compromise its performance on D. suzukii in the laboratory. However, producing a final generation on D. suzukii prior to release could increase its efficacy towards the pest.


Sign in / Sign up

Export Citation Format

Share Document