scholarly journals Auto-regulatory feedback by RNA-binding proteins

2019 ◽  
Vol 11 (10) ◽  
pp. 930-939 ◽  
Author(s):  
Michaela Müller-McNicoll ◽  
Oliver Rossbach ◽  
Jingyi Hui ◽  
Jan Medenbach

Abstract RNA-binding proteins (RBPs) are key regulators in post-transcriptional control of gene expression. Mutations that alter their activity or abundance have been implicated in numerous diseases such as neurodegenerative disorders and various types of cancer. This highlights the importance of RBP proteostasis and the necessity to tightly control the expression levels and activities of RBPs. In many cases, RBPs engage in an auto-regulatory feedback by directly binding to and influencing the fate of their own mRNAs, exerting control over their own expression. For this feedback control, RBPs employ a variety of mechanisms operating at all levels of post-transcriptional regulation of gene expression. Here we review RBP-mediated autogenous feedback regulation that either serves to maintain protein abundance within a physiological range (by negative feedback) or generates binary, genetic on/off switches important for e.g. cell fate decisions (by positive feedback).


2019 ◽  
Vol 97 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Laura P.M.H. de Rooij ◽  
Derek C.H. Chan ◽  
Ava Keyvani Chahi ◽  
Kristin J. Hope

Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP–RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.





2008 ◽  
Vol 36 (6) ◽  
pp. 1191-1193 ◽  
Author(s):  
Alexander Ademokun ◽  
Martin Turner

Post-transcriptional control of gene expression is an important mechanism for maintaining cellular homoeostasis and regulating the immune response to infection. It allows control of mRNA abundance, translation and localization. Mechanisms for post-transcriptional control involve RNA-binding proteins and miRNAs (microRNAs). The TTP(tristetraprolin) family of proteins recognize and bind AU-rich elements. Deletion of TTP led to a systemic autoimmune syndrome with excess circulating TNFα (tumour necrosis factor α) and GM-CSF (granulocyte/macrophage colony-stimulating factor) due to aberrantly stabilized mRNA. The family may also have a role in control of lymphocyte development and function. miRNAs regulate gene expression by promoting decay or inhibiting translation of transcripts with base pair complementarity. The importance of miRNAs in lymphocytes is highlighted by the T-cell-specific deletion of Dicer, an enzyme required for miRNA-mediated processing and from the phenotype of bic (B-cell integration cluster)/miR-155 (miRNA 155)-deficient mice.



2019 ◽  
Vol 20 (8) ◽  
pp. 1965 ◽  
Author(s):  
Cosmin Cătălin Mustăciosu ◽  
Adela Banciu ◽  
Călin Mircea Rusu ◽  
Daniel Dumitru Banciu ◽  
Diana Savu ◽  
...  

The neuron-specific Elav-like Hu RNA-binding proteins were described to play an important role in neuronal differentiation and plasticity by ensuring the post-transcriptional control of RNAs encoding for various proteins. Although Elav-like Hu proteins alterations were reported in diabetes or neuropathy, little is known about the regulation of neuron-specific Elav-like Hu RNA-binding proteins in sensory neurons of dorsal root ganglia (DRG) due to the diabetic condition. The goal of our study was to analyze the gene and protein expression of HuB, HuC, and HuD in DRG sensory neurons in diabetes. The diabetic condition was induced in CD-1 adult male mice with single-intraperitoneal injection of streptozotocin (STZ, 150 mg/kg), and 8-weeks (advanced diabetes) after induction was quantified the Elav-like proteins expression. Based on the glycemia values, we identified two types of responses to STZ, and mice were classified in STZ-resistant (diabetic resistant, glycemia < 260 mg/dL) and STZ-sensitive (diabetic, glycemia > 260 mg/dL). Body weight measurements indicated that 8-weeks after STZ-induction of diabetes, control mice have a higher increase in body weight compared to the diabetic and diabetic resistant mice. Moreover, after 8-weeks, diabetic mice (19.52 ± 3.52 s) have longer paw withdrawal latencies in the hot-plate test than diabetic resistant (11.36 ± 1.92 s) and control (11.03 ± 1.97 s) mice, that correlates with the installation of warm hypoalgesia due to the diabetic condition. Further on, we evidenced the decrease of Elav-like gene expression in DRG neurons of diabetic mice (Elavl2, 0.68 ± 0.05 fold; Elavl3, 0.65 ± 0.01 fold; Elavl4, 0.53 ± 0.07 fold) and diabetic resistant mice (Ealvl2, 0.56 ± 0.07 fold; Elavl3, 0.32 ± 0.09 fold) compared to control mice. Interestingly, Elav-like genes have a more accentuated downregulation in diabetic resistant than in diabetic mice, although hypoalgesia was evidenced only in diabetic mice. The Elav-like gene expression changes do not always correlate with the Hu protein expression changes. To detail, HuB is upregulated and HuD is downregulated in diabetic mice, while HuB, HuC, and HuD are downregulated in diabetic resistant mice compared to control mice. To resume, we demonstrated HuD downregulation and HuB upregulation in DRG sensory neurons induced by diabetes, which might be correlated with altered post-transcriptional control of RNAs involved in the regulation of thermal hypoalgesia condition caused by the advanced diabetic neuropathy.



2010 ◽  
Vol 22 (1) ◽  
pp. 277
Author(s):  
L. A. Favetta ◽  
E. Van de Laar ◽  
W. A. King ◽  
J. LaMarre

The control of gene expression in the early embryo requires a highly regulated turnover of specific mRNA, particularly those of maternal origin, as the embryo becomes transcriptionally autonomous. In cattle, the period during which maternal transcripts persist can last 72 to 96 h or longer, suggesting a dynamic, regulated interplay between factors that protect transcripts before this point and those that subsequently facilitate decay. Some decay pathways for specific embryonic transcripts are now known, but many are not. In somatic cells, mRNA decay is often mediated by interactions between defined sequence elements (ARE) in the 3′ untranslated region of important target genes and specific RNA-binding proteins (AUBP) that promote or inhibit decay of the associated transcript. These have not been extensively characterized in embryos. We hypothesized that changes in the pattern of expression of one or several AUBP in the developing bovine embryo would support a role for these proteins in mRNA turnover and the control of gene expression. We, therefore, evaluated the expression of different AUBP (HuR, AUF1, TTP) in bovine oocytes and early embryos in vitro. Bovine oocytes obtained at slaughter were matured, fertilized, and cultured using standard protocols. Oocytes and embryos from different stages were either placed in Trizol for subsequent RNA isolation and RT-PCR analysis or fixed in 4% paraformaldehyde and subsequently processed for immunohistochemical detection of AUBP. Analysis by RT-PCR revealed that AUF1, an mRNA destabilizing protein, was expressed at all stages examined (immature oocyte, mature oocyte, 2 to 4 cells, 8 to 16 cells, morulae, and blastocyst) except in morulae. Another mRNA destabilizing protein, TTP, was expressed at the morula stage only. An mRNA stabilizing factor, HuR, was expressed at all stages except the morula. Immunohistochemical analysis revealed that the pattern of protein expression for AUF1 and TTP essentially mirrored that observed at the RNA level as detected by RT-PCR. Together, these results show that AUBP expression in the early bovine embryo is dynamic, with RNA-binding proteins present at all times during development and changes in expression evident at the morula stage. This suggests that modification of presynthesized (i.e. maternal) AUBP is likely to control mRNA decay during the maternal to embryonic transition (8-cell stage) and that the expression of TTP at the morula stage might mark the onset of embryonic control of mRNA stability. Research was supported by NSERC, OMAFRA, and the Canada Research Chairs Program.



2020 ◽  
Vol 21 (18) ◽  
pp. 6835
Author(s):  
Jonas Weiße ◽  
Julia Rosemann ◽  
Vanessa Krauspe ◽  
Matthias Kappler ◽  
Alexander W. Eckert ◽  
...  

Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.



Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1539 ◽  
Author(s):  
Yogesh Saini ◽  
Jian Chen ◽  
Sonika Patial

Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.



2003 ◽  
Vol 332 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Trevor W. Reichman ◽  
Andrew M. Parrott ◽  
Ivo Fierro-Monti ◽  
David J. Caron ◽  
Peter N. Kao ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document