Editorial Regulating Gene Expression at the Post-Transcriptional Level: Spotlight on RNA-Binding Proteins [Hot Topic: Proteins Involved in Post-Transcriptional Control of Gene Expression]

2012 ◽  
Vol 13 (4) ◽  
pp. 281-283 ◽  
Author(s):  
Michael Fahling
2008 ◽  
Vol 36 (6) ◽  
pp. 1191-1193 ◽  
Author(s):  
Alexander Ademokun ◽  
Martin Turner

Post-transcriptional control of gene expression is an important mechanism for maintaining cellular homoeostasis and regulating the immune response to infection. It allows control of mRNA abundance, translation and localization. Mechanisms for post-transcriptional control involve RNA-binding proteins and miRNAs (microRNAs). The TTP(tristetraprolin) family of proteins recognize and bind AU-rich elements. Deletion of TTP led to a systemic autoimmune syndrome with excess circulating TNFα (tumour necrosis factor α) and GM-CSF (granulocyte/macrophage colony-stimulating factor) due to aberrantly stabilized mRNA. The family may also have a role in control of lymphocyte development and function. miRNAs regulate gene expression by promoting decay or inhibiting translation of transcripts with base pair complementarity. The importance of miRNAs in lymphocytes is highlighted by the T-cell-specific deletion of Dicer, an enzyme required for miRNA-mediated processing and from the phenotype of bic (B-cell integration cluster)/miR-155 (miRNA 155)-deficient mice.


2019 ◽  
Vol 11 (10) ◽  
pp. 930-939 ◽  
Author(s):  
Michaela Müller-McNicoll ◽  
Oliver Rossbach ◽  
Jingyi Hui ◽  
Jan Medenbach

Abstract RNA-binding proteins (RBPs) are key regulators in post-transcriptional control of gene expression. Mutations that alter their activity or abundance have been implicated in numerous diseases such as neurodegenerative disorders and various types of cancer. This highlights the importance of RBP proteostasis and the necessity to tightly control the expression levels and activities of RBPs. In many cases, RBPs engage in an auto-regulatory feedback by directly binding to and influencing the fate of their own mRNAs, exerting control over their own expression. For this feedback control, RBPs employ a variety of mechanisms operating at all levels of post-transcriptional regulation of gene expression. Here we review RBP-mediated autogenous feedback regulation that either serves to maintain protein abundance within a physiological range (by negative feedback) or generates binary, genetic on/off switches important for e.g. cell fate decisions (by positive feedback).


2018 ◽  
Vol 24 (16) ◽  
pp. 1766-1771 ◽  
Author(s):  
Kazuya Masuda ◽  
Tadamitsu Kishimoto

Background: Infection, tissue damage and aging can cause inflammation with high levels of inflammatory cytokines. Overproduction of inflammatory cytokines often leads to systemic inflammatory response syndrome (SIRS), severe sepsis, and septic shock. However, prominent therapeutic targets have not been found, although the incidence of sepsis is likely to increase annually. Our recent studies indicate that some RNA-binding proteins, which control gene expression of inflammatory cytokines at the post-transcriptional level, may play a critical role in inflammatory diseases such as sepsis. Results: 1) One of the RNA-binding proteins, AT-rich interactive domain-containing 5a (Arid5a) promotes cytokine production through control of mRNA half-lives of pro-inflammatory molecules such as IL-6, STAT3, T-bet, and OX40 in activated macrophages and T cells. Arid5a KO mice are refractory to endotoxin shock, bleomycininduced lung injury, and inflammatory autoimmune disease. 2) Chlorpromazine (CPZ), which is recognized as a psychotic drug, impairs post-transcriptional gene expression of Il6 in LPS-stimulated macrophages: CPZ inhibits the binding activity of Arid5a to the 3’UTR of Il6 mRNA, thereby destabilizing Il6 mRNA possibly through suppression of Arid5a expression. 3) CPZ has strong suppressive effects on cytokine production such as TNF-α in vivo. Mice with treatment of CPZ are resistant to lipopolysaccharide (LPS)-induced shock. Conclusion: Thus, Arid5a contributes to the activation of macrophages and T cells through positive control of mRNA half-lives of inflammatory cytokines and its related molecules, which might lead to cytokine storm. Interestingly, Arid5a was identified from an inhibitory effect of CPZ on IL-6 production in macrophages activated by LPS. Therefore, CPZ derivatives or Arid5a inhibitors may have a potential to suppress severe sepsis through control of post-transcriptional gene expression.


2019 ◽  
Vol 20 (8) ◽  
pp. 1965 ◽  
Author(s):  
Cosmin Cătălin Mustăciosu ◽  
Adela Banciu ◽  
Călin Mircea Rusu ◽  
Daniel Dumitru Banciu ◽  
Diana Savu ◽  
...  

The neuron-specific Elav-like Hu RNA-binding proteins were described to play an important role in neuronal differentiation and plasticity by ensuring the post-transcriptional control of RNAs encoding for various proteins. Although Elav-like Hu proteins alterations were reported in diabetes or neuropathy, little is known about the regulation of neuron-specific Elav-like Hu RNA-binding proteins in sensory neurons of dorsal root ganglia (DRG) due to the diabetic condition. The goal of our study was to analyze the gene and protein expression of HuB, HuC, and HuD in DRG sensory neurons in diabetes. The diabetic condition was induced in CD-1 adult male mice with single-intraperitoneal injection of streptozotocin (STZ, 150 mg/kg), and 8-weeks (advanced diabetes) after induction was quantified the Elav-like proteins expression. Based on the glycemia values, we identified two types of responses to STZ, and mice were classified in STZ-resistant (diabetic resistant, glycemia < 260 mg/dL) and STZ-sensitive (diabetic, glycemia > 260 mg/dL). Body weight measurements indicated that 8-weeks after STZ-induction of diabetes, control mice have a higher increase in body weight compared to the diabetic and diabetic resistant mice. Moreover, after 8-weeks, diabetic mice (19.52 ± 3.52 s) have longer paw withdrawal latencies in the hot-plate test than diabetic resistant (11.36 ± 1.92 s) and control (11.03 ± 1.97 s) mice, that correlates with the installation of warm hypoalgesia due to the diabetic condition. Further on, we evidenced the decrease of Elav-like gene expression in DRG neurons of diabetic mice (Elavl2, 0.68 ± 0.05 fold; Elavl3, 0.65 ± 0.01 fold; Elavl4, 0.53 ± 0.07 fold) and diabetic resistant mice (Ealvl2, 0.56 ± 0.07 fold; Elavl3, 0.32 ± 0.09 fold) compared to control mice. Interestingly, Elav-like genes have a more accentuated downregulation in diabetic resistant than in diabetic mice, although hypoalgesia was evidenced only in diabetic mice. The Elav-like gene expression changes do not always correlate with the Hu protein expression changes. To detail, HuB is upregulated and HuD is downregulated in diabetic mice, while HuB, HuC, and HuD are downregulated in diabetic resistant mice compared to control mice. To resume, we demonstrated HuD downregulation and HuB upregulation in DRG sensory neurons induced by diabetes, which might be correlated with altered post-transcriptional control of RNAs involved in the regulation of thermal hypoalgesia condition caused by the advanced diabetic neuropathy.


2010 ◽  
Vol 22 (1) ◽  
pp. 277
Author(s):  
L. A. Favetta ◽  
E. Van de Laar ◽  
W. A. King ◽  
J. LaMarre

The control of gene expression in the early embryo requires a highly regulated turnover of specific mRNA, particularly those of maternal origin, as the embryo becomes transcriptionally autonomous. In cattle, the period during which maternal transcripts persist can last 72 to 96 h or longer, suggesting a dynamic, regulated interplay between factors that protect transcripts before this point and those that subsequently facilitate decay. Some decay pathways for specific embryonic transcripts are now known, but many are not. In somatic cells, mRNA decay is often mediated by interactions between defined sequence elements (ARE) in the 3′ untranslated region of important target genes and specific RNA-binding proteins (AUBP) that promote or inhibit decay of the associated transcript. These have not been extensively characterized in embryos. We hypothesized that changes in the pattern of expression of one or several AUBP in the developing bovine embryo would support a role for these proteins in mRNA turnover and the control of gene expression. We, therefore, evaluated the expression of different AUBP (HuR, AUF1, TTP) in bovine oocytes and early embryos in vitro. Bovine oocytes obtained at slaughter were matured, fertilized, and cultured using standard protocols. Oocytes and embryos from different stages were either placed in Trizol for subsequent RNA isolation and RT-PCR analysis or fixed in 4% paraformaldehyde and subsequently processed for immunohistochemical detection of AUBP. Analysis by RT-PCR revealed that AUF1, an mRNA destabilizing protein, was expressed at all stages examined (immature oocyte, mature oocyte, 2 to 4 cells, 8 to 16 cells, morulae, and blastocyst) except in morulae. Another mRNA destabilizing protein, TTP, was expressed at the morula stage only. An mRNA stabilizing factor, HuR, was expressed at all stages except the morula. Immunohistochemical analysis revealed that the pattern of protein expression for AUF1 and TTP essentially mirrored that observed at the RNA level as detected by RT-PCR. Together, these results show that AUBP expression in the early bovine embryo is dynamic, with RNA-binding proteins present at all times during development and changes in expression evident at the morula stage. This suggests that modification of presynthesized (i.e. maternal) AUBP is likely to control mRNA decay during the maternal to embryonic transition (8-cell stage) and that the expression of TTP at the morula stage might mark the onset of embryonic control of mRNA stability. Research was supported by NSERC, OMAFRA, and the Canada Research Chairs Program.


2018 ◽  
Author(s):  
Kayley H. Janssen ◽  
Manisha R. Diaz ◽  
Cindy J. Gode ◽  
Matthew C. Wolfgang ◽  
Timothy L. Yahr

ABSTRACTThe Gram-negative opportunistic pathogen Pseudomonas aeruginosa has distinct genetic programs that favor either acute or chronic virulence gene expression. Acute virulence is associated with twitching and swimming motility, expression of a type III secretion system (T3SS), and the absence of alginate, Psl, or Pel polysaccharide production. Traits associated with chronic infection include growth as a biofilm, reduced motility, and expression of a type VI secretion system (T6SS). The Rsm post-transcriptional regulatory system plays an important role in the inverse control of phenotypes associated with acute and chronic virulence. RsmA and RsmF are RNA-binding proteins that interact with target mRNAs to control gene expression at the post-transcriptional level. Previous work found that RsmA activity is controlled by at least three small, non-coding regulatory RNAs (RsmW, RsmY, and RsmZ). In this study, we took an in-silico approach to identify additional sRNAs that might function in the sequestration of RsmA and/or RsmF and identified RsmV, a 192 nt transcript with four predicted RsmA/RsmF consensus binding sites. RsmV is capable of sequestering RsmA and RsmF in vivo to activate translation of tssA1, a component of the T6SS, and to inhibit T3SS gene expression. Each of the predicted RsmA/RsmF consensus binding sites contribute to RsmV activity. Electrophoretic mobility shifts assays show that RsmF binds RsmV with >10-fold higher affinity than RsmY and RsmZ. Gene expression studies revealed that the temporal expression pattern of RsmV differs from RsmW, RsmY, and RsmZ. These findings suggest that each sRNA may play distinct roles in controlling RsmA and RsmF activity.IMPORTANCEThe role of RsmF in post-transcriptional control of gene expression remains enigmatic. While numerous rsmA-dependent phenotypes are more pronounced in an rsmAF double mutant, deletion of rsmF alone has only modest effects. Understanding mechanisms that control RsmF activity will provide insight into additional roles for RsmF. In the current study we identify RsmV as an sRNA that controls RsmA and RsmF activity, and show that RsmV, RsmW, RsmY, and RsmZ are differentially expressed during growth.


2007 ◽  
Vol 6 (11) ◽  
pp. 1964-1978 ◽  
Author(s):  
Claudia Hartmann ◽  
Corinna Benz ◽  
Stefanie Brems ◽  
Louise Ellis ◽  
Van-Duc Luu ◽  
...  

ABSTRACT In the African trypanosome Trypanosoma brucei nearly all control of gene expression is posttranscriptional; sequences in the 3′-untranslated regions of mRNAs determine the steady-state mRNA levels by regulation of RNA turnover. Here we investigate the roles of two related proteins, TbUBP1 and TbUBP2, containing a single RNA recognition motif, in trypanosome gene expression. TbUBP1 and TbUBP2 are in the cytoplasm and nucleus, comprise ca. 0.1% of the total protein, and are not associated with polysomes or RNA degradation enzymes. Overexpression of TbUBP2 upregulated the levels of several mRNAs potentially involved in cell division, including the CFB1 mRNA, which encodes a protein with a cyclin F-box domain. CFB1 regulation was mediated by the 3′-untranslated region and involved stabilization of the mRNA. Depletion of TbUBP2 and TbUBP1 inhibited growth and downregulated expression of the cyclin F box protein gene CFB2; trans splicing was unaffected. The results of pull-down assays indicated that all tested mRNAs were bound to TbUBP2 or TbUBP1, with some preference for CFB1. We suggest that TbUBP1 and TbUBP2 may be relatively nonspecific RNA-binding proteins and that specific effects of overexpression or depletion could depend on competition between various different proteins for RNA binding.


2017 ◽  
Vol 45 (4) ◽  
pp. 1007-1014 ◽  
Author(s):  
Robert Harvey ◽  
Veronica Dezi ◽  
Mariavittoria Pizzinga ◽  
Anne E. Willis

The ability of mammalian cells to modulate global protein synthesis in response to cellular stress is essential for cell survival. While control of protein synthesis is mediated by the regulation of eukaryotic initiation and elongation factors, RNA-binding proteins (RBPs) provide a crucial additional layer to post-transcriptional regulation. RBPs bind specific RNA through conserved RNA-binding domains and ensure that the information contained within the genome and transcribed in the form of RNA is exported to the cytoplasm, chemically modified, and translated prior to folding into a functional protein. Thus, this group of proteins, through mediating translational reprogramming, spatial reorganisation, and chemical modification of RNA molecules, have a major influence on the robust cellular response to external stress and toxic injury.


2019 ◽  
Author(s):  
Li Li ◽  
Isana Veksler-Lublinsky ◽  
Anna Y. Zinovyeva

AbstractmicroRNAs (miRNAs) are potent regulators of gene expression that function in diverse developmental and physiological processes. Argonaute proteins loaded with miRNAs form the miRNA Induced Silencing Complexes (miRISCs) that repress gene expression at the post-transcriptional level. miRISCs target genes through partial sequence complementarity between the miRNA and the target mRNA’s 3’ UTR. In addition to being targeted by miRNAs, these mRNAs are also extensively regulated by RNA-binding proteins (RBPs) through RNA processing, transport, stability, and translation regulation. While the degree to which RBPs and miRISCs functionally interact to regulate gene expression is likely extensive, we have only begun to unravel these functional interactions. An RNAi-based screen of putative ALG-1 Argonaute interactors has identified a role for a conserved RNA binding protein, HRPK-1, in modulating miRNA activity during C. elegans development. Here, we report the physical and genetic interaction between HRPK-1 and ALG-1/miRNAs. Specifically, we report the genetic and molecular characterizations of hrpk-1 and its role in C. elegans development and miRNA-mediated target repression. We show that loss of hrpk-1 causes numerous developmental defects and enhances the mutant phenotypes associated with reduction of miRNA activity, including those of lsy-6, mir-35-family, and let-7-family miRNAs. In addition to hrpk-1 genetic interaction with these miRNA families, hrpk-1 is required for efficient regulation of lsy-6 target cog-1. We report that hrpk-1 may play a role in miRNA processing but is not globally required for mature miRNA biogenesis or ALG-1/AIN-1 miRISC assembly and confirm HRPK-1 ability to co-precipitate with ALG-1. We suggest that HRPK-1 may functionally interact with miRNAs on multiple levels to enhance miRNA/miRISC gene regulatory activity and present several models for its activity.Author summarymicroRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level. The core microRNA Induced Silencing Complex (miRISC), composed of Argonaute, mature microRNA, and GW182 protein effector, assembles on the target messenger RNA and inhibits translation or leads to messenger RNA degradation. RNA binding proteins interface with miRNA pathways on multiple levels to coordinate gene expression regulation. Here, we report identification and characterization of HRPK-1, a conserved RNA binding protein, as a physical and functional interactor of miRNAs. We confirm the physical interaction between HRPK-1, an hnRNPK homolog, and Argonaute ALG-1. We report characterizations of hrpk-1 role in development and its functional interactions with multiple miRNA families. We suggest that HRPK-1 promotes miRNA activity on multiple levels in part by contributing to miRNA processing and by coordinating with miRISC at the level of target RNAs. This work contributes to our understanding of how RNA binding proteins and auxiliary miRNA cofactors may interface with miRNA pathways to modulate miRNA gene regulatory activity.


Sign in / Sign up

Export Citation Format

Share Document