scholarly journals A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy

Microscopy ◽  
2016 ◽  
Vol 65 (6) ◽  
pp. 488-498 ◽  
Author(s):  
Masaki Makihara ◽  
Takashi Watanabe ◽  
Eiji Usukura ◽  
Kozo Kaibuchi ◽  
Akihiro Narita ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Na Zhang ◽  
Hong Shan ◽  
Mingdong Liu ◽  
Tianhao Li ◽  
Rui Luo ◽  
...  

AbstractParamyxoviruses, including the mumps virus, measles virus, Nipah virus and Sendai virus (SeV), have non-segmented single-stranded negative-sense RNA genomes which are encapsidated by nucleoproteins into helical nucleocapsids. Here, we reported a double-headed SeV nucleocapsid assembled in a tail-to-tail manner, and resolved its helical stems and clam-shaped joint at the respective resolutions of 2.9 and 3.9 Å, via cryo-electron microscopy. Our structures offer important insights into the mechanism of the helical polymerization, in particular via an unnoticed exchange of a N-terminal hole formed by three loops of nucleoproteins, and unveil the clam-shaped joint in a hyper-closed state for nucleocapsid dimerization. Direct visualization of the loop from the disordered C-terminal tail provides structural evidence that C-terminal tail is correlated to the curvature of nucleocapsid and links nucleocapsid condensation and genome replication and transcription with different assembly forms.


Microscopy ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 350-359
Author(s):  
Nobuhiro Morone ◽  
Eiji Usukura ◽  
Akihiro Narita ◽  
Jiro Usukura

Abstract Unroofing, which is the mechanical shearing of a cell to expose the cytoplasmic surface of the cell membrane, is a unique preparation method that allows membrane cytoskeletons to be observed by cryo-electron microscopy, atomic force microscopy, freeze-etching electron microscopy and other methods. Ultrasound and adhesion have been known to mechanically unroof cells. In this study, unroofing using these two means was denoted sonication unroofing and adhesion unroofing, respectively. We clarified the mechanisms by which cell membranes are removed in these unroofing procedures and established efficient protocols for each based on the mechanisms. In sonication unroofing, fine bubbles generated by sonication adhered electrostatically to apical cell surfaces and then removed the apical (dorsal) cell membrane with the assistance of buoyancy and water flow. The cytoplasmic surface of the ventral cell membrane remaining on the grids became observable by this method. In adhesion unroofing, grids charged positively by coating with Alcian blue were pressed onto the cells, thereby tightly adsorbing the dorsal cell membrane. Subsequently, a part of the cell membrane strongly adhered to the grids was peeled from the cells and transferred onto the grids when the grids were lifted. This method thus allowed the visualization of the cytoplasmic surface of the dorsal cell membrane. This paper describes robust, improved protocols for the two unroofing methods in detail. In addition, micro-unroofing (perforation) likely due to nanobubbles is introduced as a new method to make cells transparent to electron beams.


2016 ◽  
Vol 72 (10) ◽  
pp. 1137-1148 ◽  
Author(s):  
Guray Kuzu ◽  
Ozlem Keskin ◽  
Ruth Nussinov ◽  
Attila Gursoy

The structures of protein assemblies are important for elucidating cellular processes at the molecular level. Three-dimensional electron microscopy (3DEM) is a powerful method to identify the structures of assemblies, especially those that are challenging to study by crystallography. Here, a new approach, PRISM-EM, is reported to computationally generate plausible structural models using a procedure that combines crystallographic structures and density maps obtained from 3DEM. The predictions are validated against seven available structurally different crystallographic complexes. The models display mean deviations in the backbone of <5 Å. PRISM-EM was further tested on different benchmark sets; the accuracy was evaluated with respect to the structure of the complex, and the correlation with EM density maps and interface predictions were evaluated and compared with those obtained using other methods. PRISM-EM was then used to predict the structure of the ternary complex of the HIV-1 envelope glycoprotein trimer, the ligand CD4 and the neutralizing protein m36.


2017 ◽  
Vol 23 (S1) ◽  
pp. 848-849
Author(s):  
Hui Wei ◽  
Venkat Dandey ◽  
Zhening Zhang ◽  
Ashleigh Raczkowski ◽  
Bridget Carragher ◽  
...  

AbstractAlmost every aspect of cryo electron microscopy (CryoEM) has been automated over the last few decades. One of the challenges that remains to be addressed is the robust and reliable preparation of vitrified specimens of suitable ice thickness. The development of a new self-blotting nanowire (Zhang et al., 2013) grid in conjunction with a piezo electric dispensing robot called Spotiton (Jain et al., 2012) enables spreading a sample to a thin film without the use of externally applied filter paper. This new approach has the advantage of using small amounts of protein material, resulting in large areas of ice of a well- defined thickness containing evenly distributed particles (Razinkov et al., 2016).


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Si ◽  
Jing He

Cryo-electron microscopy (cryo-EM) has produced density maps of various resolutions. Althoughα-helices can be detected from density maps at 5–8 Å resolutions,β-strands are challenging to detect at such density maps due to close-spacing ofβ-strands. The variety of shapes ofβ-sheets adds the complexity ofβ-strands detection from density maps. We propose a new approach to model traces ofβ-strands forβ-barrel density regions that are extracted from cryo-EM density maps. In the test containing eightβ-barrels extracted from experimental cryo-EM density maps at 5.5 Å–8.25 Å resolution,StrandRollerdetected about 74.26% of the amino acids in theβ-strands with an overall 2.05 Å 2-way distance between the detectedβ-traces and the observed ones, if the best of the fifteen detection cases is considered.


Biochemistry ◽  
2021 ◽  
Vol 60 (14) ◽  
pp. 1075-1079
Author(s):  
Yi-Hsiang Chiu ◽  
Kuang-Ting Ko ◽  
Tzu-Jing Yang ◽  
Kuen-Phon Wu ◽  
Meng-Ru Ho ◽  
...  

Author(s):  
Thomas S. Leeson ◽  
C. Roland Leeson

Numerous previous studies of outer segments of retinal receptors have demonstrated a complex internal structure of a series of transversely orientated membranous lamellae, discs, or saccules. In cones, these lamellae probably are invaginations of the covering plasma membrane. In rods, however, they appear to be isolated and separate discs although some authors report interconnections and some continuities with the surface near the base of the outer segment, i.e. toward the inner segment. In some species, variations have been reported, such as longitudinally orientated lamellae and lamellar whorls. In cross section, the discs or saccules show one or more incisures. The saccules probably contain photolabile pigment, with resulting potentials after dipole formation during bleaching of pigment. Continuity between the lamina of rod saccules and extracellular space may be necessary for the detection of dipoles, although such continuity usually is not found by electron microscopy. Particles on the membranes have been found by low angle X-ray diffraction, by low temperature electron microscopy and by freeze-etching techniques.


Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.


Sign in / Sign up

Export Citation Format

Share Document