scholarly journals Dispensable Amino Acids, except Glutamine and Proline, Are Ideal Nitrogen Sources for Protein Synthesis in the Presence of Adequate Indispensable Amino Acids in Adult Men

2020 ◽  
Vol 150 (9) ◽  
pp. 2398-2404
Author(s):  
Leah Cooper ◽  
Ronald O Ball ◽  
Paul B Pencharz ◽  
Ryosei Sakai ◽  
Rajavel Elango

ABSTRACT Background Nutritionally, there is a dietary requirement for indispensable amino acids (IAAs) but also a requirement for nitrogen (N) intake for the de novo synthesis of the dispensable amino acids (DAAs). It has been suggested that there might be a dietary requirement for specific DAAs. Objectives Experiment 1 tested whether 9 of the DAAs (Ala, Arg, Asn, Asp, Gln, Glu, Gly, Pro, Ser) are ideal N sources using the indicator amino acid oxidation (IAAO) technique. Experiment 2 examined whether there is a dietary requirement for Glu in adult men. Methods Seven healthy men (aged 20–24 y) participated in 11 or 2 test diet intakes, in experiment 1 and 2, respectively, in a repeated measures design. In experiment 1, a base diet consisting of the IAA provided at the RDA was compared with test intakes with the base diet plus addition of individual DAAs to meet a 50:50 ratio of IAA:DAA on an N basis. In experiment 2, the diets corresponded to the amino acid pattern present in egg protein, in which all Glu and Gln was present as Glu, or removed, with Ser used to make the diets isonitrogenous. On each study day the IAAO protocol with l-[1-13C]phenylalanine was used to measure whole-body protein synthesis. Results In experiment 1, repeated measures ANOVA with post hoc multiple comparisons showed that 7 of the 9 DAAs (Ala, Arg, Asn, Asp, Glu, Gly, Ser) decreased IAAO significantly (P < 0.05) compared with base IAA diet, the exceptions being Gln and Pro. In experiment 2, a paired t test did not find significant (P > 0.05) differences in the IAAO in response to removal and replacement of Glu intake. Conclusions The results suggest that in healthy men most DAAs are ideal N sources for protein synthesis, in the presence of adequate IAAs, and that endogenous synthesis of Glu is sufficient. Registered clinicaltrials.gov identifier: NCT02009917.

2008 ◽  
Vol 294 (2) ◽  
pp. E475-E479 ◽  
Author(s):  
Mahroukh Rafii ◽  
Jane M. McKenzie ◽  
Susan A. Roberts ◽  
George Steiner ◽  
Ronald O. Ball ◽  
...  

Phenylalanine hydroxylation is necessary for the conversion of phenylalanine to tyrosine and disposal of excess phenylalanine. Studies of in vivo regulation of phenylalanine hydroxylation suffer from the lack of a method to determine intrahepatocyte enrichment of phenylalanine and tyrosine. apoB-100, a hepatic export protein, is synthesized from intrahepatocyte amino acids. We designed an in vivo multi-isotope study, [15N]phenylalanine and [2H2]tyrosine to determine rates of phenylalanine hydroxylation from plasma enrichments in free amino acids and apoB-100. For independent verification of apoB-100 as a reflection of enrichment in the intrahepatocyte pool, [1-13C]lysine was used as an indicator amino acid (IAA) to measure in vivo changes in protein synthesis in response to tyrosine supplementation. Adult men ( n = 6) were fed an amino acid-based diet with low phenylalanine (9 mg·kg−1·day−1, 4.54 μmol·kg−1·,h−1) and seven graded intakes of tyrosine from 2.5 (deficient) to 12.5 (excess) mg·kg−1·day−1. Gas chromatography-quadrupole mass spectrometry did not detect any tracer in apoB-100 tyrosine. A new and more sensitive method to measure label enrichment in proteins using isotope ratio mass spectrometry demonstrated that phenylalanine hydroxylation measured in apoB-100 decreased linearly in response to increasing tyrosine intake and reached a break point at 6.8 mg·kg−1·day−1. IAA oxidation decreased with increased tyrosine intake and reached a break point at 6.0 mg·kg−1·day−1. We conclude: apoB-100 is an accurate and useful measure of changes in phenylalanine hydroxylation; the synthesis of tyrosine via phenylalanine hydroxylation is regulated to meet the needs for protein synthesis; and that plasma phenylalanine does not reflect changes in protein synthesis.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 118-119
Author(s):  
Teresa A Davis ◽  
Marko Rudar ◽  
Jane Naberhuis ◽  
Agus Suryawan ◽  
Marta Fiorotto

Abstract Livestock animals are important dual-purpose models that benefit both agricultural and biomedical research. The neonatal pig is an appropriate model for the human infant to assess long-term effects of early life nutrition on growth and metabolic outcomes. Previously we have demonstrated that prematurity blunts the feeding-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. The objective of this study was to determine whether reduced sensitivity to insulin and/or amino acids drives this blunted response. Pigs were delivered by caesarean section at preterm (PT, 103 d gestation) or at term (T, 112 d gestation) and fed parenterally for 4 d. On day 4, pigs were subject to euinsulinemic-euaminoacidemic-euglycemic (FAST), hyperinsulinemic-euaminoacidemic-euglycemic (INS), or euinsulinemic-hyperaminoacidemic-euglycemic (AA) clamps for 120 min, yielding six treatments: PT-FAST (n = 7), PT-INS (n = 9), PT-AA (n = 9), T-FAST (n = 8), T-INS (n = 9), and T-AA (n = 9). A flooding dose of L-[4-3H]Phe was injected into pigs 30 min before euthanasia. Birth weight and relative body weight gain were lower in PT than T pigs (P < 0.001). Plasma insulin concentration was increased from ~3 to ~100 µU/mL in INS compared to FAST and AA pigs (P < 0.001); plasma BCAA concentration was increased from ~250 to ~1,000 µmol/L in AA compared to FAST and INS pigs (P < 0.001). Despite achieving similar insulin and amino acid levels, longissimus dorsi AKT phosphorylation, mechanistic target of rapamycin (mTOR)·Rheb abundance, mTOR activation, and protein synthesis were lower in PT-INS than T-INS pigs (Table 1). Although amino-acid induced dissociation of Sestrin2 from GATOR2 was not affected by prematurity, mTOR·RagA abundance, mTOR·RagC abundance, mTOR activation, and protein synthesis were lower in PT-AA than T-AA pigs. The impaired capacity of premature skeletal muscle to respond to insulin or amino acids and promote protein synthesis likely contributes to reduced lean mass accretion. Research was supported by NIH and USDA.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 200-201
Author(s):  
Hyunjun Choi ◽  
Sun Jong You ◽  
Beob Gyun G Kim

Abstract The objective was to determine the influence of amino acid (AA) supplementation during the adaptation period on the ileal digestibility of crude protein and AA in corn and soybean meal (SBM). Six barrows with an initial body weight of 30.9 ± 2.6 kg fitted with a T-cannula in the distal ileum were assigned to a 6 × 6 Latin square design with 6 dietary treatments and 6 periods. Two experimental diets contained corn or SBM as the sole source of AA and an N-free diet was additionally prepared. For AA supplementation groups, an AA mixture consisted of Gly, Lys, Met, Thr, Trp, Ile, Val, His, and Phe was added to the corn diet and the N-free diet at the expense of cornstarch, and an AA mixture of Lys, Met, and Thr was added to the SBM diet. All diets contained 0.5% of chromic oxide. The 6 experimental diets were fed to the pigs for 4 and half days, and the 3 diets containing AA mixture were switched to the respective diets without AA mixture during the following 2 and half days. Ileal digesta were collected during the last 2 days. The addition of AA mixture during the adaptation period caused increased apparent ileal digestibility of Arg and Trp in corn (P < 0.05), but did not affect that in SBM. The addition of AA mixture during the adaptation period caused increased apparent ileal digestibility of Pro and Gly regardless of feed ingredient (P < 0.05), but did not affect that of other AA. All AA except Pro in corn and SBM were unaffected by the addition of AA mixture during the adaptation period. In conclusion, the addition of amino acid during the adaptation period does not affect the standardized ileal digestibility of indispensable amino acids in feed ingredients.


1971 ◽  
Vol 121 (5) ◽  
pp. 817-827 ◽  
Author(s):  
R. C. Hider ◽  
E. B. Fern ◽  
D. R. London

1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


1994 ◽  
Vol 267 (6) ◽  
pp. E877-E885 ◽  
Author(s):  
I. Tauveron ◽  
D. Larbaud ◽  
C. Champredon ◽  
E. Debras ◽  
S. Tesseraud ◽  
...  

The experiment was carried out to clarify the roles of insulin and amino acids on protein synthesis in fed lactating goats (30 days postpartum). Protein synthesis in the liver and various skeletal muscles was assessed after an intravenous injection of a large dose of unlabeled valine containing a tracer dose of L-[2,3,4-3H]valine. The animals were divided into three groups. Group I was infused with insulin (1.7 mumol/min) for 2.5 h under glucose, potassium, and amino acid replacement. Group A was infused with an amino acid mixture to create stable hyperaminoacidemia for 2.5 h. Group C animals were controls. The fractional synthesis rates (FSR) were 31.5 +/- 2.2, 6.5 +/- 0.4, 4.3 +/- 0.8, 4.0 +/- 1.2, 3.9 +/- 1.2, and 3.6 +/- 0.4%/day (SD) in liver, masseter, diaphragm, anconeus, semitendinosus, and longissimus dorsi, respectively, for group C. Neither hyperinsulinemia in group I nor hyperaminoacidemia in group A had not affected by hyperinsulinemia but was stimulated by hyperaminoacidemia (+30%, P < 0.05). In contrast to previous experiments in which a labeled amino acid was constantly infused, this study revealed a stimulating effect of amino acids on protein synthesis in the liver but not in skeletal muscles. As previously observed in studies with the constant-infusion method, insulin had no effect on protein synthesis.


1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


1971 ◽  
Vol 125 (2) ◽  
pp. 515-520 ◽  
Author(s):  
P. J. Reeds ◽  
K. A. Munday ◽  
M. R. Turner

The separate effects of insulin and growth hormone on the uptake and incorporation of five amino acids into diaphragm muscle from non-hypophysectomized rabbits has been examined. Both growth hormone and insulin, when present in the medium separately, stimulated the incorporation into protein of the amino acids, leucine, arginine, valine, lysine and histidine. Insulin also stimulated amino acid uptake, but growth hormone did not. When insulin and growth hormone were present in the incubation medium together, the uptake and incorporation of valine, the only amino acid studied under these conditions, tended to be greater than the sum of the separate effects of the two hormones.


Sign in / Sign up

Export Citation Format

Share Document