Growth of Managed Older Douglas-fir Stands: Implications of the Black Rock Thinning Trial in the Coast Range of Western Oregon

2021 ◽  
Author(s):  
John Tappeiner ◽  
Darius Adams ◽  
Claire Montgomery ◽  
Douglas Maguire

Abstract The most recent remeasurement of growth (at approximate total stand age 100 years) from the Black Rock Thinning Trial in western Oregon provides useful information for forest owners interested in accelerating restoration of older forest characteristics in Douglas-fir stands of the Pacific Northwest. Thinnings at several intensities at total stand age of roughly 50 years effectively reset stand growth patterns. With quadratic mean diameters in thinned plots up to 40% higher than those of unthinned controls, thinned plot mean annual increments (MAIs) and periodic annual increments continue to rise 55 years after thinning, with the peak in board foot and cubic foot MAI apparently still decades in the future. Assuming repeatable future thinning responses similar to the Black Rock Trial, financial analysis of the opportunity costs of extending rotations to 100 years indicates that some thinning treatments can reduce opportunity costs by up to half at a 6% discount rate. Study Implications Active management through thinning may be a useful tool for public and private landowners interested in rapid development of stands with older forest characteristics to enhance output of some ecosystem services. Heavy thinning regimes, of the type described here, are compatible with growing trees with large diameter stems, large branches, and large crowns. They also reduce fuel accumulation by lowering mortality rates of stems less than 60 years old and slowing the rate of crown recession, branch mortality, and branch litterfall. Midrotation thinning revenues reduce opportunity costs of holding more rapidly growing stems to older ages, which may be a consideration for some owners.

1993 ◽  
Vol 23 (8) ◽  
pp. 1695-1703 ◽  
Author(s):  
Robert G. Haight

A financial analysis of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and red alder (Alnusrubra Bong.) management is conducted using yield projections from the Stand Projection Simulator for the Pacific Northwest region of the United States. The analysis includes uncertainty in the price trends and stocking levels of both species following reforestation. Results from a case study in which Douglas-fir price is likely to increase faster than red alder price show that (i) on more productive sites, greater regeneration investment is justified to increase the likelihood of Douglas-fir establishment; (ii) on less productive sites, low-cost regeneration options that produce mixed-species stands have expected present values close to or greater than a high-cost Douglas-fir regeneration effort; (iii) optimal precommercial removal of red alder depends on midrotation prices and regeneration success, and in many cases growing a mixed-species stand to maturity produces the highest economic return; (iv) commercial thinning of Douglas-fir increases the expected present value of the most intensive regeneration option by up to 10%. The low-cost regeneration options have relatively high expected returns because of low initial investments and the presence of two species that may have high values in the future. The sensitivity of these results to changes in the probability distributions of regeneration success and price trends is discussed.


2011 ◽  
Vol 41 (2) ◽  
pp. 300-308 ◽  
Author(s):  
Alexa K. Michel ◽  
Susanne Winter ◽  
Andreas Linde

The focus of this study was to investigate the role of tree dimension and associated bark structures for high structural complexity and high natural biodiversity in forest ecosystems. Two-hundred and ninety-one Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirbel) Franco) trees in two regions of the US Pacific Northwest were investigated for the relationship between tree diameter and bark thickness (measured as bark fissure depth) and the relationships of both to bark microhabitats and signs of bark use. Our results emphasize the habitat function of tree bark of large-diameter Douglas-fir trees. Many bark microhabitat types and their total abundance significantly increased with increasing tree diameter and bark thickness. These were bark pockets with and without decaying substrate, bowls in the bark, and signs of bark use, e.g., small holes from woodpecker drillings and large insects, large bark excavations from woodpeckers, spider funnel webs, natural cavities at the stem base without decay, and the occurrence of herb vegetation at the tree base. In forest monitoring, tree diameter may be a good indicator of the number of bark microhabitats and of bark thickness because it is strongly related to both of these variables. However, because of the high variability of bark thickness in large-diameter trees, we suggest monitoring bark fissure depth if an ecological evaluation of Douglas-fir forests is needed.


Author(s):  
Natalia Kostenko

The subject matter of research interest here is the movement of sociological reflection concerning the interplay of public and private realms in social, political and individual life. The focus is on the boundary constructs embodying publicity, which are, first of all, classical models of the space of appearance for free citizens of the polis (H. Arendt) and the public sphere organised by communicative rationality (Ju. Habermas). Alternative patterns are present in modern ideas pertaining to the significance of biological component in public space in the context of biopolitics (M. Foucault), “inclusive exclusion of bare life” (G. Agamben), as well as performativity of corporeal and linguistic experience related to the right to participate in civil acts such as popular assembly (J. Butler), where the established distinctions between the public and the private are levelled, and the interrelationship of these two realms becomes reconfigured. Once the new media have come into play, both the structure and nature of the public sphere becomes modified. What assumes a decisive role is people’s physical interaction with online communication gadgets, which instantly connect information networks along various trajectories. However, the rapid development of information technology produces particular risks related to the control of communications industry, leaving both public and private realms unprotected and deforming them. This also urges us to rethink the issue of congruence of the two ideas such as transparency of societies and security.


2015 ◽  
Vol 398 (1-2) ◽  
pp. 281-289 ◽  
Author(s):  
Robert A. Slesak ◽  
Timothy B. Harrington ◽  
Anthony W. D’Amato

2003 ◽  
Vol 93 (7) ◽  
pp. 790-798 ◽  
Author(s):  
Pablo H. Rosso ◽  
Everett M. Hansen

Swiss needle cast (SNC), caused by the fungus Phaeocryptopus gaeumannii, is producing extensive defoliation and growth reduction in Douglas-fir forest plantations along the Pacific Northwest coast. An SNC disease prediction model for the coastal area of Oregon was built by establishing the relationship between the distribution of disease and the environment. A ground-based disease survey (220 plots) was used to study this relationship. Two types of regression approaches, multiple linear regression and regression tree, were used to study the relationship between disease severity and climate, topography, soil, and forest stand characteristics. Fog occurrence, precipitation, temperature, elevation, and slope aspect were the variables that contributed to explain most of the variability in disease severity, as indicated by both the multiple regression (r 2 = 0.57) and regression tree (RMD = 0.27) analyses. The resulting regression model was used to construct a disease prediction map. Findings agree with and formalize our previous understanding of the ecology of SNC: warmer and wetter conditions, provided that summer temperatures are relatively low, appear to increase disease severity. Both regression approaches have characteristics that can be useful in helping to improve our understanding of the ecology of SNC. The prediction model is able to produce a continuous prediction surface, suitable for hypothesis testing and assisting in disease management and research.


2002 ◽  
Vol 32 (6) ◽  
pp. 1057-1070 ◽  
Author(s):  
Linda E Winter ◽  
Linda B Brubaker ◽  
Jerry F Franklin ◽  
Eric A Miller ◽  
Donald Q DeWitt

The history of canopy disturbances over the lifetime of an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand in the western Cascade Range of southern Washington was reconstructed using tree-ring records of cross-dated samples from a 3.3-ha mapped plot. The reconstruction detected pulses in which many western hemlock (Tsuga heterophylla (Raf.) Sarg.) synchronously experienced abrupt and sustained increases in ringwidth, i.e., "growth-increases", and focused on medium-sized or larger ([Formula: see text]0.8 ha) events. The results show that the stand experienced at least three canopy disturbances that each thinned, but did not clear, the canopy over areas [Formula: see text]0.8 ha, occurring approximately in the late 1500s, the 1760s, and the 1930s. None of these promoted regeneration of the shade-intolerant Douglas-fir, all of which established 1500–1521. The disturbances may have promoted regeneration of western hemlock, but their strongest effect on tree dynamics was to elicit western hemlock growth-increases. Canopy disturbances are known to create patchiness, or horizontal heterogeneity, an important characteristic of old-growth forests. This reconstructed history provides one model for restoration strategies to create horizontal heterogeneity in young Douglas-fir stands, for example, by suggesting sizes of areas to thin in variable-density thinnings.


1990 ◽  
Vol 7 (2) ◽  
pp. 86-89 ◽  
Author(s):  
Mark E. Kubiske ◽  
Marc D. Abrams ◽  
James C. Finley

Abstract Cut Douglas-fir Christmas trees grown in Pennsylvania from Rocky Mountain seed sources and coastal trees grown in the Pacific Northwest and shipped into Pennsylvania were compared for keepability. Following various cold treatments, the cut ends of trees were placed in water in an indoor display area. Coastal trees placed in a freezer at - 29°C for 24 h had 89 ± 5.1% (mean ± standard error) needle loss after one day of display, while Rocky Mountain origin trees exhibited only 3 ± 2.0% needle loss after 1 day and 50 ± 5.6% needle loss after 18 days. Coastal produced trees exposed to temperatures > - 12°C had 50 ± 9.8% needle loss at the end of the experiment, while Rocky Mountain trees ended with 22 ± 3.2% needle loss. Four additional treatments consisted of trees placed on an outdoor lot and periodically moved indoors to simulate Christmas tree market activity. Again, there was a significant difference between trees from coastal and Rocky Mountain sources, with 57.2 ± 4.3% and 11.8 ± 1.2% needle loss after 3 days, respectively. By the end of the 23 day experiment, the coastal trees were essentially devoid of needles, whereas Rocky Mountain trees had an average of only 20% needle loss. Coastal trees also exhibited a very noticeable loss of color and lustre. North. J. Appl. For. 7:86-89, June 1990.


Sign in / Sign up

Export Citation Format

Share Document