scholarly journals Success of native and invasive plant congeners depends on inorganic nitrogen compositions and levels

2020 ◽  
Author(s):  
Xi-Mei Geng ◽  
Wei-Ming He

Abstract Aims Successful plant invaders usually exhibit three strategies: Jack-of-all-trades (more robust in stressful sites), Master-of-some (more responsive in favorable sites), and Jack-and-master (both robustness and responsiveness). To revisit these strategies, we examined how soil inorganic nitrogen (N) compositions and levels influence the success of native and invasive plant congeners in the context of plant communities. Methods We conducted an experiment involving three fixed factors: species origin, N composition, and N level. Here we selected 21 plant species (eight pairs of invasive and native congeners and five non-congeneric natives) to assemble plant communities, which were subject to nine N environments consisting of three N compositions (3:1, 2:2, and 1:3 NO3  -/NH4  +) and three N levels (low, medium, and high N). We determined the following metrics: total biomass, relative biomass (a proxy of species success), mortality rate, and mortality time. Important Findings Across nine N environments, native and invasive congeners exhibited similar total biomass, relative biomass, and mortality time, but invaders had a marginally lower mortality rate than natives. Similar success between native and invasive congeners was linked to their similar growth and tolerance. N compositions influenced mortality time and N levels affected the total biomass and relative biomass. Importantly, species origin, N composition, and N level interactively affected the total biomass, relative biomass, and mortality time. These findings suggest that native and invasive plant congeners may be similarly successful across different N environments, and that inorganic N compositions and levels both contribute to plant invasion success.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246685
Author(s):  
Tongbao Qu ◽  
Xue Du ◽  
Yulan Peng ◽  
Weiqiang Guo ◽  
Chunli Zhao ◽  
...  

According to the ‘novel weapons hypothesis’, invasive success depends on harmful plant biochemicals, including allelopathic antimicrobial roots exudate that directly inhibit plant growth and soil microbial activity. However, the combination of direct and soil-mediated impacts of invasive plants via allelopathy remains poorly understood. Here, we addressed the allelopathic effects of an invasive plant species (Rhus typhina) on a cultivated plant (Tagetes erecta), soil properties and microbial communities. We grew T. erecta on soil samples at increasing concentrations of R. typhina root extracts and measured both plant growth and soil physiological profile with community-level physiological profiles (CLPP) using Biolog Eco-plates incubation. We found that R. typhina root extracts inhibit both plant growth and soil microbial activity. Plant height, Root length, soil organic carbon (SOC), total nitrogen (TN) and AWCD were significantly decreased with increasing root extract concentration, and plant above-ground biomass (AGB), below-ground biomass (BGB) and total biomass (TB) were significantly decreased at 10 mg·mL-1 of root extracts. In particular, root extracts significantly reduced the carbon source utilization of carbohydrates, carboxylic acids and polymers, but enhanced phenolic acid. Redundancy analysis shows that soil pH, TN, SOC and EC were the major driving factors of soil microbial activity. Our results indicate that strong allelopathic impact of root extracts on plant growth and soil microbial activity by mimicking roots exudate, providing novel insights into the role of plant–soil microbe interactions in mediating invasion success.


2020 ◽  
Author(s):  
Hong-Wei Yu ◽  
Wei-Ming He

Abstract Aims Soil inorganic nitrogen (N) has long been recognized to play an important role in plant invasions. Whilst comparing the N use strategies of multiple invasive versus native plant congeners along an entire N gradient is key to understanding plant invasion success, there are few related studies. Methods We conducted a potted experiment with six invasive and native congeneric pairs, which were subjected to 11 nitrate/ammonium (NO3  -/NH4  +) ratios (i.e. 100% NO3  - at one end and 100% NH4  + at the other end), each with low and high N levels. Each species-N combination was replicated eight times, and thus there were 2112 pots in total. We measured the following traits: the total biomass, growth advantage, biomass allocation, leaf chlorophyll content, and low-N tolerance. Important Findings Invasive and native congeners grew well at any NO3  -/NH4  + ratios, and their responses of growth, allocation, and tolerance were approximately parallel along the 11 NO3  -/NH4  + ratios across two N levels. Plant invaders grew larger and had greater chlorophyll contents, higher root biomass allocation, and stronger low-N tolerance than their congeneric natives. These findings suggest that invasive and native plant congeners may utilize similar inorganic N forms (i.e. NO3  - and NH4  +) across an entire N composition gradient and that higher N use efficiencies could favor alien plants to invade new plant communities where congeneric natives are dominants.


Author(s):  
Jin Zheng ◽  
Tai-Jie Zhang ◽  
Bo-Hui Li ◽  
Wei-Jie Liang ◽  
Qi-Lei Zhang ◽  
...  

Phenotypic plasticity affords invasive plant species the ability to colonize a wide range of habitats, but physiological plasticity of their stems is seldom recognized. Investigation of the stem plasticity of invasive plant species could lead to a better understanding of their invasiveness. We performed a pot experiment involving defoliation treatments and an isolated culture experiment to determine whether the invasive species Mikania micrantha exhibits greater plasticity in the stems than do three native species that co-occur in southern China and then explored the mechanism underlying the modification of its stem photosynthesis. Our results showed that the stems of M. micrantha exhibited higher plasticity in terms of either net or gross photosynthesis in response to the defoliation treatment. These effects were positively related to an increased stem elongation rate. The enhancement of stem photosynthesis in M. micrantha resulted from the comprehensive action involving increases in the Chl a/b ratio, D1 protein and stomatal aperture, changes in chloroplast morphology and a decrease in anthocyanins. Increased plasticity of stem photosynthesis may improve the survival of M. micrantha under harsh conditions and allow it to rapidly recover from defoliation injuries. Our results highlight that phenotypic plasticity promotes the invasion success of alien plant invaders.


2021 ◽  
Vol 48 (2) ◽  
pp. 215-228
Author(s):  
Lubov Gubar ◽  
Serhii Koniakin

Abstract In connection with the increasing negative impact of invasive alien species on biodiversity and the environment in general, their research, as well as throughout the world, is relevant. The distribution of the Heracleum sosnowskyi and H. mantegazzianum of the secondary range on the example of the Kyiv agglomeration is investigated in the work. In our study we aimed to evaluate the possibility of spontaneous spread of giant hogweeds in the secondary range, adaptation of the species to the new conditions of the environment that favor to control of these species’ expansion and reduce the threat to the urban ecosystems and citizens’ health. We hypothesise that in the secondary range H. sosnowskyi and H. mantegazzianum settle sites with relatively high temperature (Tr), lightening (Lc), and soil moisture conditions similar to that in their natural range. 17 populations and four localities (sites) of H. sosnowskyi and H. mantegazzianum were studied. They were found within forest, meadow, riverine and ruderal plant communities. It is indicated that the advent species fully adapted to the conditions of the environment. The difference by ecological indicators Lc2 and Tm1 is pointed out. According to the results of our research, for the area of Kyiv urban agglomeration the growth of H. sosnowskyi and H. mantegazzianum is indicated in the plants communities of six classes. They spread most in ruderal plant communities of the: Robinietea, Artemisietea, Epilobietea classes. The studied species belong to invasive plant species in Ukraine and are characterized by extremely high effect on the environment and high invasive potential.


Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40 ◽  
Author(s):  
Nathan E. Harms

The ability to invade communities in a variety of habitats (e.g., along a depth gradient) may facilitate establishment and spread of invasive plants, but how multiple lineages of a species perform under varying conditions is understudied. A series of greenhouse common garden experiments were conducted in which six diploid and four triploid populations of the aquatic invasive plant Butomus umbellatus L. (Butomaceae) were grown in submersed or emergent conditions, in monoculture or in a multispecies community, to compare establishment and productivity of cytotypes under competition. Diploid biomass overall was 12 times higher than triploids in the submersed experiment and three times higher in the emergent experiment. Diploid shoot:root ratio was double that of triploid plants in submersed conditions overall, and double in emergent conditions in monoculture. Relative interaction intensities (RII) indicated that triploid plants were sixteen times more negatively impacted by competition under submersed conditions but diploid plants were twice as impacted under emergent conditions. Recipient communities were similarly negatively impacted by B. umbellatus cytotypes. This study supports the idea that diploid and triploid B. umbellatus plants are equally capable of invading emergent communities, but that diploid plants may be better adapted for invading in submersed habitats. However, consistently lower shoot:root ratios in both monoculture and in communities suggests that triploid plants may be better-adapted competitors in the long term due to increased resource allocation to roots. This represents the first examination into the role of cytotype and habitat on competitive interactions of B. umbellatus.


2015 ◽  
Vol 52 (4) ◽  
pp. 518-536 ◽  
Author(s):  
FIONA MUCHECHETI ◽  
IGNACIO C. MADAKADZE

SUMMARYThe short term nutrient supply of Leucaena leucocephala, Calliandra calothyrsus, Acacia angustissima and Acacia karoo prunings with or without supplemental inorganic nitrogen were tested using rape (Brassica napus L.) in a field trial. Prunings were applied at a rate of 5 t ha−1 to soil, alone or with supplemental N at 37.5 kg N ha−1 (¼ of recommended N). The respective decomposition and N release constants of the prunings were 9.15 and 9.70% for L. leucocephala; 6.15 and 6.40 for A. angustissima; 4.50 and 4.90 for C. calothyrsus; and 2.20 and 2.10 for A. karoo. These constants were best described by the (lignin+polyphenol)-to-nitrogen ratio of the prunings. Total biomass over the two seasons ranged from 1.40 to 17.28 t DM ha−1 and total growth rates ranged from 2.34–26.70 g plant−1 week−1. The cumulative N recovery at week 9 ranged from 21.1–66.1 %. Legume tree leaves can be used as a source of N for vegetable production. Farmers who use high tannin leaf litter are recommended to supplement with mineral N in order to assure adequate N availability during plant growth.


2021 ◽  
Author(s):  
Anna Aldorfová ◽  
Věra Hanzelková ◽  
Lucie Drtinová ◽  
Hana Pánková ◽  
Tomáš Cajthaml ◽  
...  

Abstract Purpose: To compare plant-soil feedback (PSF) of invasive Cirsium vulgare and non-invasive C. oleraceum in their native range to test a hypothesis that the invasive species is more limited by specialized pathogens in the native range and/or able to benefit more from generalist mutualists, and thus may benefit more from loss of specialized soil biota in a secondary range.Methods: We assessed changes in soil nutrients and biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and control soil, from which all, some or no biota was excluded. Results: The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling emergence which benefited from presence of non-specific microbes. The invasive species biomass responded less positively to specialized (self-conditioned) microbiota and more negatively to specialized larger-sized biota compared to the non-specialized control biota, suggesting the species may benefit more from enemy release and suffer less from loss of specialized mutualists when introduced to a secondary range. The invasive species showed greater ability to decrease its root-shoot ratio in presence of harmful biota and thus reduce their negative effects on its performance.Conclusions: Our study highlights the utility of detailed PSF research in the native range of species for understanding the factors that regulate performance of invasive and non-invasive species in their native range, and for pinpointing the types of biota involved in their regulation and how this changes across the plants life cycle.


Author(s):  
Анатолий Савва ◽  
Anatoly Savva ◽  
Леонид Есипенко ◽  
Leonid Esipenko ◽  
Сергей Падалка ◽  
...  

The invasion of A. artemisiifolia L into the agricultural landscape of Russia led to the phytosanitary destabilization. The dominance of ambrosia in biogeocenoses led to changes in species composition in plant communities, disruption of the structure of trophic bonds, hydrological and energy balance. All these factors of influence of quarantine weed plant led to reduction of productivity of crops. The study of patterns of competitive relationships of invasive plant in anthropogenic ecosystems were held in various man-made ecosystems of Krasnodar territory. Original data on ecological relations between the invider and native flora were obtained


2017 ◽  
Vol 2 (4) ◽  
pp. 67-83 ◽  
Author(s):  
L. I. Ryabushko ◽  
N. V. Pospelova ◽  
D. S. Balycheva ◽  
N. P. Kovrigina ◽  
O. A. Troshchenko ◽  
...  

In mollusk cultivation areas large amount of biomass and metabolites is accumulated. For this reason, biological monitoring in the farming areas, which includes study of microalgae as environmental quality indicators, is of considerable importance. Samples of mussels harvested from collectors at 6 m depth over the period February 2015 – March 2016 have been utilized for studying epizoon microalgae residing on mollusk shells. At the same time, sea water at depths of 0 and 6 m was sampled for determining phytoplankton and hydrochemical parameters of environment in the mussel-and-oyster farm area. Dissolved oxygen, biological oxygen demand after five days of incubation in the dark (BOD5), alkaline permanganate oxidizability, silicates, organic and inorganic forms of nitrogen and phosphorus have been quantified in the water samples using conventional methods. In the epizoon of the mussel shells, 108 taxa of microalgae of four phyla have been identified: 3 species of Сyanoprokaryota, 6 of Dinophyta, 6 of Haptophyta and 93 of Bacillariophyta. The maximum values of the species richness (26) and abundance of microalgae were observed in February (74,78·103 cells·cm-2, t = 9,7 °C) and April 2015 (62,0·103 cells·cm-2, t = 10,3 °C), as well as in January 2016 (65,1·103 cells·cm-2, t = 9,5 °C). The highest biomass was registered in August (0,272 mg·cm-2, t = 25,5 °C). The main contribution to the total abundance was made by the diatoms Tabularia fasciculata while Navicula ramosissima, and cyanobacteria were prevalent in the total biomass. In phytoplankton at the depths of 0 and 6 m, 135 taxa belonging to eight phyla have been found: 2 species of Cyanoprokaryota, 47 of Acillariophyta, 57 of Inophyta, 17 of Haptophyta, 5 of Chlorophyta, 2 of Euglenophyta, 3 of Cryptophyta and 2 of Chrysophyta. The genus Chaetoceros dominated by the number of diatoms species (18). In terms of abundance and biomass, the dinoflagellate Prorocentrum micans and haptophyte Emiliania huxleyi were dominant. The maximum abundance (370·107 cells·m-3) and biomass (7560 mg·m-3) of the phytoplankton were observed in spring and autumn. In total, 213 of microalgae taxa have been identified in the phytoplankton and mussel shell epizoon, with 30 ones being common for both. Furthermore, 26 potentially toxic species and 24 indicator species have been determined, among which 26 ones are betamesosaprobionts, the indicators of moderate level of water pollution. Thermohaline characteristics of water in the mollusk farm area did not exceed those of the long-term observations. At all horizons, the oxygen content was at the level of 93–125 % of saturation. The sea water oxidizability did not exceed the maximum permissible level established by fishery standards. The concentration of nutrients was high with a large fluctuation range, which indicates anthropogenic impact on the water area. The values of the total inorganic nitrogen-to-phosphorus and silicon-to-phosphorus ratios suggested nitrogen and silicon limitations for the microalgae community development from July to December. The mussel epizoon microalgae abundance strongly correlated with water temperature and dissolved oxygen, and a strong correlation of the biomass with inorganic phosphorus was observed, too. Moderate correlations were also found with inorganic phosphorus and organic nitrogen. For the phytoplankton, moderate correlations of abundance with hydrological and hydrochemical characteristics were identified: with nitrates in the surface layer and with temperature, dissolved oxygen, and organic nitrogen in the subsurface water layer. The phytoplankton biomass moderately correlated with the silicate concentration. The hydrological and hydrochemical structure of sea water, especially in the mollusk farming areas, affected species composition and quantitative characteristics of planktonic and benthic microalgae communities.


Sign in / Sign up

Export Citation Format

Share Document