scholarly journals Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum

2020 ◽  
Vol 71 (14) ◽  
pp. 4345-4358
Author(s):  
Haiwen Zhang ◽  
Hao Feng ◽  
Junwen Zhang ◽  
Rongchao Ge ◽  
Liyuan Zhang ◽  
...  

Abstract K+/Na+ homeostasis is the primary core response for plant to tolerate salinity. Halophytes have evolved novel regulatory mechanisms to maintain a suitable K+/Na+ ratio during long-term adaptation. The wild halophyte Hordeum brevisubulatum can adopt efficient strategies to achieve synergistic levels of K+ and Na+ under high salt stress. However, little is known about its molecular mechanism. Our previous study indicated that HbCIPK2 contributed to prevention of Na+ accumulation and K+ reduction. Here, we further identified the HbCIPK2-interacting proteins including upstream Ca2+ sensors, HbCBL1, HbCBL4, and HbCBL10, and downstream phosphorylated targets, the voltage-gated K+ channel HbVGKC1 and SOS1-like transporter HbSOS1L. HbCBL1 combined with HbCIPK2 could activate HbVGKC1 to absorb K+, while the HbCBL4/10–HbCIPK2 complex modulated HbSOS1L to exclude Na+. This discovery suggested that crosstalk between the sodium response and the potassium uptake signaling pathways indeed exists for HbCIPK2 as the signal hub, and paved the way for understanding the novel mechanism of K+/Na+ homeostasis which has evolved in the halophytic grass.

2020 ◽  
Author(s):  
Jonathan G. Murphy ◽  
Jakob J. Gutzmann ◽  
Lin Lin ◽  
Jiahua Hu ◽  
Ronald S. Petralia ◽  
...  

ABSTRACTThe transient voltage-gated K+ current (IA) mediated by Kv4.2 in CA1 hippocampal pyramidal neurons regulates dendritic excitability, synaptic plasticity, and learning. Here we report that Ca2+ entry mediated by the voltage-gated Ca2+ channel subunit Cav2.3 regulates Kv4.2 function in CA1 pyramidal neurons through Ca2+ binding auxiliary subunits known as K+ channel interacting proteins (KChIPs). We characterized an interaction between Cav2.3 and Kv4.2 using immunofluorescence colocalization, coimmunoprecipitation, electron microscopy, FRAP, and FRET. We found that Ca2+-entry via Cav2.3 increases Kv4.2-mediated whole-cell current due in part to an increase in Kv4.2 surface expression. In hippocampal neurons, pharmacological block of Cav2.3 reduced whole-cell IA. We also found reduced IA in Cav2.3 knockout mouse neurons with a loss of the dendritic IA gradient. Furthermore, the Cav2.3-Kv4.2 complex was found to regulate the size of synaptic currents and spine Ca2+ transients. These results reveal an intermolecular Cav2.3-Kv4.2 complex impacting synaptic integration in CA1 hippocampal neurons.


2002 ◽  
Vol 8 (2) ◽  
pp. 79-85 ◽  
Author(s):  
P. T. Huang ◽  
T. Y. Chen ◽  
L. J. Tseng ◽  
K. L. Lou ◽  
H. H. Liou ◽  
...  

2017 ◽  
Vol 65 (3) ◽  

A lot has been published on the topic concussion in sports during the last years, conscience was sharpened, much was structured and defined more precisely, help tools were developed and rules changed. This article summarizes the fifth edition of the recently published guidelines of the “International Consensus Conference on Concussion in Sport”. In addition, new findings regarding gender differences and recovery will be presented, as well as the modified “return-to-sport” and the novel “return-to-school” protocols. Despite increased knowledge many questions remain such as the therapy of persistent symptoms or long-term sequelae of recurrent concussions.


2021 ◽  
Vol 22 (9) ◽  
pp. 4728
Author(s):  
Tanuza Das ◽  
Eun Joo Song ◽  
Eunice EunKyeong Kim

Ubiquitination and deubiquitination are protein post-translational modification processes that have been recognized as crucial mediators of many complex cellular networks, including maintaining ubiquitin homeostasis, controlling protein stability, and regulating several signaling pathways. Therefore, some of the enzymes involved in ubiquitination and deubiquitination, particularly E3 ligases and deubiquitinases, have attracted attention for drug discovery. Here, we review recent findings on USP15, one of the deubiquitinases, which regulates diverse signaling pathways by deubiquitinating vital target proteins. Even though several basic previous studies have uncovered the versatile roles of USP15 in different signaling networks, those have not yet been systematically and specifically reviewed, which can provide important information about possible disease markers and clinical applications. This review will provide a comprehensive overview of our current understanding of the regulatory mechanisms of USP15 on different signaling pathways for which dynamic reverse ubiquitination is a key regulator.


Data in Brief ◽  
2021 ◽  
Vol 36 ◽  
pp. 107027
Author(s):  
Anna Papazoglou ◽  
Muhammad Imran Arshaad ◽  
Magdalena Elisabeth Siwek ◽  
Christina Henseler ◽  
Johanna Daubner ◽  
...  

Infection ◽  
2021 ◽  
Author(s):  
Ali Hamady ◽  
JinJu Lee ◽  
Zuzanna A. Loboda

Abstract Objectives The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. Methods/Results In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1–2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. Conclusion Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Michael Travisano ◽  
Richard E Lenski

Abstract This study investigates the physiological manifestation of adaptive evolutionary change in 12 replicate populations of Escherichia coli that were propagated for 2000 generations in a glucose-limited environment. Representative genotypes from each population were assayed for fitness relative to their common ancestor in the experimental glucose environment and in 11 novel single-nutrient environments. After 2000 generations, the 12 derived genotypes had diverged into at least six distinct phenotypic classes. The nutrients were classified into four groups based upon their uptake physiology. All 12 derived genotypes improved in fitness by similar amounts in the glucose environment, and this pattern of parallel fitness gains was also seen in those novel environments where the limiting nutrient shared uptake mechanisms with glucose. Fitness showed little or no consistent improvement, but much greater genetic variation, in novel environments where the limiting nutrient differed from glucose in its uptake mechanisms. This pattern of fitness variation in the novel nutrient environments suggests that the independently derived genotypes adapted to the glucose environment by similar, but not identical, changes in the physiological mechanisms for moving glucose across both the inner and outer membranes.


2010 ◽  
Vol 391 (1) ◽  
pp. 909-914 ◽  
Author(s):  
Bo Pang ◽  
Haifeng Zheng ◽  
Dong Hoon Shin ◽  
Kyeong Cheon Jung ◽  
Jae Hong Ko ◽  
...  
Keyword(s):  
T Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document