scholarly journals Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species

2020 ◽  
Vol 71 (19) ◽  
pp. 5823-5836 ◽  
Author(s):  
Léa Roch ◽  
Sylvain Prigent ◽  
Holger Klose ◽  
Coffi-Belmys Cakpo ◽  
Bertrand Beauvoit ◽  
...  

Abstract Fleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity. Fruit fresh weight and biomass composition, including the major soluble and insoluble components, were determined throughout fruit development and ripening. Best-fitting models of fruit weight were used to estimate relative growth rate (RGR), which was significantly correlated with several biomass components, especially protein content (R=84), stearate (R=0.72), palmitate (R=0.72), and lignocerate (R=0.68). The strong link between biomass composition and RGR was further evidenced by generalized linear models that predicted RGR with R-values exceeding 0.9. Comparison of the fruit also showed that climacteric fruit (apple, peach, kiwifruit) contained more non-cellulosic cell-wall glucose and fucose, and more starch, than non-climacteric fruit. The rate of starch net accumulation was also higher in climacteric fruit. These results suggest that the way biomass is constructed has a major influence on performance, especially growth rate.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1180a-1180
Author(s):  
Theodore M. DeJong

The growth and development patterns of fruit have been studied for many years and it has become traditional to think of peaches as having a double sigmoid pattern with three main stages fruit growth. This concept is primarily based on analyses of fruit absolute growth rates An alternative approach is to express growth on a relative growth rate (RGR) basis which is simply the weight increase perg of fruit weight per day. This analysis applied to dry-weight peach fruit growth results in a two-phase curve that is known mathematically as a Gompertz function. During the first growth phase the RGR decreases logarithmically and during the second phase the RGR remains relatively stable. Expressing fruit growth on a RGR basis is advantageous for fruit growth carbon budget modelling because RGR is directly related to respiration rates and for physiological studies because most analyses for physiologically active substances are expressed on a weight basis. There is obviously not only one “right” way to express fruit growth but it may be instructive to use the RGR approach particularly when studying factors that may be associated with “sink” activity.


1994 ◽  
Vol 24 (2) ◽  
pp. 306-320 ◽  
Author(s):  
P.B. Reich ◽  
J. Oleksyn ◽  
M.G. Tjoelker

Seedlings of 24 European Scots pine (Pinussylvestris L.) populations were grown in controlled environment chambers under simulated photoperiodic conditions of 50 and 60°N latitude to evaluate the effect of seed mass on germination and seedling growth characteristics. Seeds of each population were classified into 1-mg mass classes, and the four classes per population with the highest frequencies were used. Photoperiod had minimal influence on seed mass effects. Overall, seed mass was positively related to the number of cotyledons and hypocotyl height. Populations differed significantly in seed mass effect on biomass. In northern populations (55–61°N), dry mass at the end of the first growing season was little affected by seed mass. However, dry mass in 9 of 15 central populations (54–48°N) and all southern (<45°N) populations correlated positively with seed mass. Relative growth rate was not related to seed mass within or across populations, and thus early growth is largely determined by seed mass. Relative growth rate also did not differ among populations, except for a geographically isolated Turkish population with the highest seed mass and lowest relative growth rate. After one growing season, height was positively correlated (r2 > 0.6) with seed mass in 15 populations. To check the duration of seed mass effects, height growth of 1- to 7-year-old field experiments established with the same seed lots were compared. Seed mass effects on height were strongest for 1-year-old seedlings and declined or disappeared by the age of 5–7 years among central and southern populations, but remained stable over that time in northern populations.


Sign in / Sign up

Export Citation Format

Share Document