ZmNF-YC13 regulates plant architecture in maize

Author(s):  
Xiupeng Mei ◽  
Jin Nan ◽  
Zikun Zhao ◽  
Shun Yao ◽  
Wenqin Wang ◽  
...  

Abstract Leaf angle (LA) and leaf orientation value (LOV) are critical agronomic traits for maize plant architecture. Many genes related to plant architecture have been identified in maize, but the functions of NF-Y members in regulating plant architecture have not been reported before. Here, we identified a regulator of maize plant architecture, ZmNF-YC13. ZmNF-YC13 was highly expressed in the leaf base zone of maize plants. ZmNF-YC13 overexpression plants showed upright leaves with narrow LA and larger LOV, while ZmNF-YC13 knockout plants had larger LA and smaller LOV, compared with wild-type plants. The changes in plant architecture were due to the changes of the expression levels of cytochrome P450 family members. ZmNF-YC13 can interact with two ZmNF-YBs (ZmNF-YB9 and ZmNF-YB10) of the LEC1 subfamily, and further recruit ZmNF-YA3 to form two NF-Y complexes. The two complexes can both activate the promoters of the transcriptional repressors (ZmWRKY76 and ZmBT2) and the promoters of PLA cluster gene can be repressed by ZmWRKY76 and ZmBT2 in maize protoplasts. We propose that ZmNF-YC13 functions as a transcriptional regulator and, together with ZmNF-YBs and ZmNF-YA3, affects plant architecture by regulating the expression of ZmWRKY76 and ZmBT2, which repress the expression of PLA clustered cytochrome P450 family members.

BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Huijun Guo ◽  
Hongchun Xiong ◽  
Yongdun Xie ◽  
Linshu Zhao ◽  
Jiayu Gu ◽  
...  

Abstract Background Wheat mutant resources with phenotypic variation have been developed in recent years. These mutants might carry favorable mutation alleles, which have the potential to be utilized in the breeding process. Plant architecture and yield-related features are important agronomic traits for wheat breeders and mining favorable alleles of these traits will improve wheat characteristics. Results Here we used 190 wheat phenotypic mutants as material and by analyzing their SNP variation and phenotypic data, mutation alleles for plant architecture and yield-related traits were identified, and the genetic effects of these alleles were evaluated. In total, 32 mutation alleles, including three pleiotropic alleles, significantly associated with agronomic traits were identified from the 190 wheat mutant lines. The SNPs were distributed on 12 chromosomes and were associated with plant height (PH), tiller number, flag leaf angle (FLA), thousand grain weight (TGW), and other yield-related traits. Further phenotypic analysis of multiple lines carrying the same mutant allele was performed to determine the effect of the allele on the traits of interest. PH-associated SNPs on chromosomes 2BL, 3BS, 3DL, and 5DL might show additive effects, reducing PH by 10.0 cm to 31.3 cm compared with wild type, which means that these alleles may be favorable for wheat improvement. Only unfavorable mutation alleles that reduced TGW and tiller number were identified. A region on chromosome 5DL with mutation alleles for PH and TGW contained several long ncRNAs, and their sequences shared more than 90% identity with cytokinin oxidase/dehydrogenase genes. Some of the mutation alleles we mined were colocalized with previously reported QTLs or genes while others were novel; these novel alleles could also result in phenotypic variation. Conclusion Our results demonstrate that favorable mutation alleles are present in mutant resources, and the region between 409.5 to 419.8 Mb on chromosome 5DL affects wheat plant height and thousand grain weight.


Author(s):  
Sina Mohammadi Aghdam ◽  
Babak Abdollahi Mandoulakani ◽  
Laura Rossini ◽  
Agnieszka Janiak ◽  
Salar Shaaf

AbstractIn grasses, biomass and grain production are affected by plant architecture traits such as tiller number, leaf size and orientation. Thus, knowledge regarding their genetic basis is a prerequisite for developing new improved varieties. Mutant screens represent a powerful approach to identify genetic factors underpinning these traits: the HorTILLUS population, obtained by mutagenesis of spring two-row cultivar Sebastian, is a valuable resource for this purpose in barley. In this study, 20 mutant families from the HorTILLUS population were selected and evaluated for tiller number, leaf angle and a range of other plant architecture and agronomic traits using an unreplicated field design with Sebastian as a check cultivar. Principal Component Analysis revealed strong relationships among number of tillers, upper canopy leaf angle, biomass and yield-related traits. Comparison to the Sebastian background revealed that most mutants significantly differed from the wild-type for multiple traits, including two mutants with more erect leaves and four mutants with increased tiller number in at least one phenological stage. Heatmap clustering identified two main groups: the first containing the two erect mutants and the second containing Sebastian and the high-tillering mutants. Among the high-tillering mutants, two showed significantly higher biomass and grain yield per plant compared to Sebastian. The selected mutants represent promising materials for the identification of genetic factors controlling tillering and leaf angle in barley.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen-li Zhu ◽  
Bao Xing ◽  
Shou-zhen Teng ◽  
Chen Deng ◽  
Zhen-yong Shen ◽  
...  

Leaf angle is one of the most important agronomic traits in rice, and changes in leaf angle can alter plant architecture to affect photosynthetic efficiency and thus determine grain yield. Therefore, it is important to identify key genes controlling leaf angle and elucidate the molecular mechanisms to improve rice yield. We obtained a mutant rela (regulator of leaf angle) with reduced leaf angle in rice by EMS mutagenesis, and map-based cloning revealed that OsRELA encodes a protein of unknown function. Coincidentally, DENSE AND ERECT PANICLE 2 (DEP2) was reported in a previous study with the same gene locus. RNA-seq analysis revealed that OsRELA is involved in regulating the expression of ILI and Expansin family genes. Biochemical and genetic analyses revealed that OsRELA is able to interact with OsLIC, a negative regulator of BR signaling, through its conserved C-terminal domain, which is essential for OsRELA function in rice. The binding of OsRELA can activate the expression of downstream genes repressed by OsLIC, such as OsILI1, a positive regulator of leaf inclination in rice. Therefore, our results suggest that OsRELA can act as a transcriptional regulator and is involved in the regulation of leaf inclination by regulating the transcriptional activity of OsLIC.


2013 ◽  
Vol 28 (2) ◽  
pp. 966-977 ◽  
Author(s):  
Carlos G. Penaloza ◽  
Brian Estevez ◽  
Dinah M. Han ◽  
Melissa Norouzi ◽  
Richard A. Lockshin ◽  
...  

1997 ◽  
Vol 26 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Christian Trautwein ◽  
Tim Rakemann ◽  
Petra Obermayer-Straub ◽  
Monika Niehof ◽  
Michael Peter Manns

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1510
Author(s):  
Samuel Henrique Kamphorst ◽  
Gabriel Moreno Bernardo Gonçalves ◽  
Antônio Teixeira do Amaral Júnior ◽  
Valter Jário de Lima ◽  
Kátia Fabiane Medeiros Schmitt ◽  
...  

The identification of traits associated with drought tolerance in popcorn is a contribution to support selection of superior plants under soil water deficit. The objective of this study was to choose morphological traits and the leaf greenness index, measured on different dates, to estimate grain yield (GY) and popping expansion (PE), evaluated in a set of 20 popcorn lines with different genealogies, estimated by multiple regression models. The variables were divided into three groups: morpho-agronomic traits—100-grain weight (GW), prolificacy (PR), tassel length (TL), number of tassel branches, anthesis-silking interval, leaf angle (FA) and leaf rolling (FB); variables related to the intensity of leaf greenness during the grain-filling period, at the leaf level, measured by a portable chlorophyll meter (SPAD) and at the canopy level, calculated as the normalized difference vegetation index (NDVI). The inbred lines were cultivated under two water conditions: well-watered (WW), maintained at field capacity, and water stress (WS), for which irrigation was stopped before male flowering. The traits GY (55%) and PE (28%) were most affected by water restriction. Among the morpho-agronomic traits, GW and PR were markedly reduced (>10%). Under dry conditions, the FA in relation to the plant stalk tended to be wider, the FB curvature greater and leaf senescence accelerated (>15% at 22 days after male flowering). The use of multiple regression for the selection of predictive traits proved to be a useful tool for the identification of groups of adequate traits to efficiently predict the economically most important features of popcorn (GY and PE). The SPAD index measured 17 days after male flowering proved useful to select indirectly for GY, while, among the morphological traits, TL stood out for the same purpose. Of all traits, PR was most strongly related with PE under WS, indicating its use in breeding programs. The exploitation of these traits by indirect selection is expected to induce increments in GY and PE.


Sign in / Sign up

Export Citation Format

Share Document