scholarly journals Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula

2009 ◽  
Vol 60 (6) ◽  
pp. 1759-1771 ◽  
Author(s):  
K. E. Nolan ◽  
S. Kurdyukov ◽  
R. J. Rose
Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 715
Author(s):  
Aline Kadri ◽  
Ghislaine Grenier De March ◽  
François Guerineau ◽  
Viviane Cosson ◽  
Pascal Ratet

The induction of plant somatic embryogenesis is often a limiting step for plant multiplication and genetic manipulation in numerous crops. It depends on multiple signaling developmental processes involving phytohormones and the induction of specific genes. The WUSCHEL gene (WUS) is required for the production of plant embryogenic stem cells. To explore a different approach to induce somatic embryogenesis, we have investigated the effect of the heterologous ArabidopsisWUS gene overexpression under the control of the jasmonate responsive vsp1 promoter on the morphogenic responses of Medicago truncatula explants. WUS expression in leaf explants increased callogenesis and embryogenesis in the absence of growth regulators. Similarly, WUS expression enhanced the embryogenic potential of hairy root fragments. The WUS gene represents thus a promising tool to develop plant growth regulator-free regeneration systems or to improve regeneration and transformation efficiency in recalcitrant crops.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 312 ◽  
Author(s):  
Haibao Tang ◽  
Vivek Krishnakumar ◽  
Shelby Bidwell ◽  
Benjamin Rosen ◽  
Agnes Chan ◽  
...  

2001 ◽  
Vol 14 (12) ◽  
pp. 1364-1367 ◽  
Author(s):  
Kathryn A. VandenBosch ◽  
Julia Frugoli

At the 2nd Medicago meeting (a satellite of the 1999 IS-MPMI meeting in Amsterdam), investigators perceived a need for standardization of genetic nomenclature in Medicago truncatula, due to the rapid growth of research on this species in the past few years. Establishment of such standards grew out of discussions begun at this meeting and continued electronically throughout the M. truncatula community. The proposed standards presented here are the consensus results of those discussions. In addition to standards for gene nomenclature, a method for community governance and a website for cataloging gene names and submitting new ones are presented. The purpose of implementing these guidelines is to help maintain consistency in the literature, to avoid redundancy, to contribute to the accuracy of databases, and, in general, to aid the international collaborations that have made M. truncatula a model system for legume biology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noriyoshi Isozumi ◽  
Yuya Masubuchi ◽  
Tomohiro Imamura ◽  
Masashi Mori ◽  
Hironori Koga ◽  
...  

AbstractA model legume, Medicago truncatula, has over 600 nodule-specific cysteine-rich (NCR) peptides required for symbiosis with rhizobia. Among them, NCR169, an essential factor for establishing symbiosis, has four cysteine residues that are indispensable for its function. However, knowledge of NCR169 structure and mechanism of action is still lacking. In this study, we solved two NMR structures of NCR169 caused by different disulfide linkage patterns. We show that both structures have a consensus C-terminal β-sheet attached to an extended N-terminal region with dissimilar features; one moves widely, whereas the other is relatively stapled. We further revealed that the disulfide bonds of NCR169 contribute to its structural stability and solubility. Regarding the function, one of the NCR169 oxidized forms could bind to negatively charged bacterial phospholipids. Furthermore, the positively charged lysine-rich region of NCR169 may be responsible for its antimicrobial activity against Escherichia coli and Sinorhizobium meliloti. This active region was disordered even in the phospholipid bound state, suggesting that the disordered conformation of this region is key to its function. Morphological observations suggested the mechanism of action of NCR169 on bacteria. The present study on NCR169 provides new insights into the structure and function of NCR peptides.


2016 ◽  
Vol 81 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Elif Yüzbaşıoğlu ◽  
Eda Dalyan ◽  
Abdülrezzak Memon ◽  
Gül Öz ◽  
Bayram Yüksel

Author(s):  
Mannix Burns ◽  
Brendan Epstein ◽  
Liana Burghardt

Leguminous plants form symbiotic relationships with rhizobia. These nitrogen-fixing bacteria live in specialized root organs called nodules. While rhizobia form the most notable host relationship within root nodules, other bacterial endophytes also inhabit these root nodules and can influence host-rhizobia interactions as well as exert effects of their own, whether beneficial or detrimental. In this study, we investigate differences in nodule communities between genotypes (A17 and R108) of a single plant species, the model legume Medicago truncatula. While diversity of endophytes in nodules was similar across hosts, both nodule endophyte composition and gene functional groups differed. In contrast to the significant direct effect of host genotype, neither the presence nor identity of a host in the previous generation (either A17 or R108) had a significant effect on the nodule endophyte diversity or composition. However, whether or not a host was present altered gene functional groups. We conclude that genetic variation within a legume host species can play an important role in the establishment of nodule microbiomes. Further studies, including GWAS and functional assays, can open the door for engineering and optimizing nodule endophyte communities that promote growth or have other beneficial qualities.


Planta ◽  
2004 ◽  
Vol 220 (5) ◽  
pp. 696-707 ◽  
Author(s):  
Hideyuki Suzuki ◽  
M. S. Srinivasa Reddy ◽  
Marina Naoumkina ◽  
Naveed Aziz ◽  
Gregory D. May ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document