Brain Imaging

Author(s):  
Jack M. Gorman

The blood–brain barrier vigorously limits what can get into and out of the brain, making our ability to understand brain function much more difficult than with any other organ in the body. The modern era of brain imaging began about a half-century ago with the introduction of computed axial tomography (CAT) and magnetic resonance imaging (MRI). Although CAT scanning shows brain structure in great detail and revolutionized the precision of medical diagnosis, including of brain disorders, it has had relatively little impact on psychiatry because most psychiatric illnesses do not involve visible abnormalities of the size, shape, or volume of brain structures. Similarly, although we have gained some insights from structural MRI, it primarily shows us the anatomy of the brain. Three other variants of MRI, however, have been extremely useful in studying psychiatric issues: functional magnetic resonance imaging, diffusion tensor imaging, and magnetic resonance spectroscopy.

2010 ◽  
Vol 2 (1) ◽  
pp. 17-24 ◽  
Author(s):  
K. M. Cecil

Advanced neuroimaging techniques offer unique insights into how childhood lead exposure impacts the brain. Volumetric magnetic resonance imaging affords anatomical information about the size of global, regional and subcomponent structures within the brain. Diffusion tensor imaging provides information about white matter architecture by quantitatively describing how water molecules diffuse within it. Proton magnetic resonance spectroscopy generates quantitative measures of neuronal, axonal and glial elements via concentration levels of select metabolites. Functional magnetic resonance imaging infers neuronal activity associated with a given task performed. Employing these techniques in the study of the Cincinnati Lead Study, a relatively homogeneous birth cohort longitudinally monitored for over 30 years, one can non-invasively and quantitatively explore how childhood lead exposure is associated with adult brain structure, organization and function. These studies yield important findings how environmental lead exposure impacts human health.


Author(s):  
Saugat Bhattacharyya ◽  
Anwesha Khasnobish ◽  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
D. N. Tibarewala

Evolution has endowed human race with the most adroit brain, and to harness its potential to the fullest the concept of brain computer interface (BCI) has emerged. One of the most crucial components of BCI is the technique of brain imaging. The first approach in the field of brain imaging was to measure the electrical and magnetic activity of the brain, the techniques being known as Electroencephalography and Magnetoencephalography. Striving for furtherance, researchers came up with another alternative known as Magnetic Resonance Imaging. But it being confined to only structural imaging, the functional aspects of brain were mapped using functional magnetic resonance imaging. A similar but comparatively newer neuroimaging modality is Functional Near Infrared Spectroscopy. Transcranial Magnetic Stimulation neuro-physiological technique is based on the principle of electromagnetic induction. Based on nuclear medicine the brain imaging technologies that are widely explored in the world of BCI are Positron Emission Tomography and Single Positron Emission Tomography.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1480-1490 ◽  
Author(s):  
Lorenzo Carnevale ◽  
Angelo Maffei ◽  
Alessandro Landolfi ◽  
Giovanni Grillea ◽  
Daniela Carnevale ◽  
...  

Hypertension is one of the main risk factors for vascular dementia and Alzheimer disease. To predict the onset of these diseases, it is necessary to develop tools to detect the early effects of vascular risk factors on the brain. Resting-state functional magnetic resonance imaging can investigate how the brain modulates its resting activity and analyze how hypertension impacts cerebral function. Here, we used resting-state functional magnetic resonance imaging to explore brain functional-hemodynamic coupling across different regions and their connectivity in patients with hypertension, as compared to subjects with normotension. In addition, we leveraged multimodal imaging to identify the signature of hypertension injury on the brain. Our study included 37 subjects (18 normotensives and 19 hypertensives), characterized by microstructural integrity by diffusion tensor imaging and cognitive profile, who were subjected to resting-state functional magnetic resonance imaging analysis. We mapped brain functional connectivity networks and evaluated the connectivity differences among regions, identifying the altered connections in patients with hypertension compared with subjects with normotension in the (1) dorsal attention network and sensorimotor network; (2) dorsal attention network and visual network; (3) dorsal attention network and frontoparietal network. Then we tested how diffusion tensor imaging fractional anisotropy of superior longitudinal fasciculus correlates with the connections between dorsal attention network and default mode network and Montreal Cognitive Assessment scores with a widespread network of functional connections. Finally, based on our correlation analysis, we applied a feature selection to highlight those most relevant to describing brain injury in patients with hypertension. Our multimodal imaging data showed that hypertensive brains present a network of functional connectivity alterations that correlate with cognitive dysfunction and microstructural integrity. Registration— URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02310217.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e67630 ◽  
Author(s):  
Hans-Peter Müller ◽  
Jan Kassubek ◽  
Ina Vernikouskaya ◽  
Albert C. Ludolph ◽  
Detlef Stiller ◽  
...  

2014 ◽  
Vol 7 ◽  
pp. MRI.S19362
Author(s):  
Arunima Pola ◽  
Suresh Anand Sadananthan ◽  
Venkatesh Gopalan ◽  
Min-Li Sandra Tan ◽  
Terry Yew Keong ◽  
...  

The focus of current treatments for obesity is to reduce the body weight or visceral fat, which requires longer duration to show effect. In this study, we investigated the short-term changes in fat metabolism in liver, abdomen, and skeletal muscle during antiobesity interventions including Sibutramine treatment and diet restriction in obese rats using magnetic resonance imaging, magnetic resonance spectroscopy, and blood chemistry. Sibutramine is an antiobesity drug that results in weight loss by increasing satiety and energy expenditure. The Sibutramine-treated rats showed reduction of liver fat and intramyocellular lipids on day 3. The triglycerides (TG) decreased on day 1 and 3 compared to baseline (day 0). The early response/nonresponse in different fat depots will permit optimization of treatment for better clinical outcome rather than staying with a drug for longer periods.


Sign in / Sign up

Export Citation Format

Share Document