Autonomic Nervous System

2021 ◽  
pp. 158-168
Author(s):  
Jeremy K. Cutsforth-Gregory

The autonomic nervous system is involved in many important unconscious body functions. It is critical for maintaining the internal environment in response to changes in the external environment. The autonomic nervous system consists of peripheral components (sympathetic and parasympathetic nerves and ganglia) and central components (ventrolateral medulla, nucleus ambiguus, nucleus of the solitary tract, periaqueductal gray, anterior cingulate gyrus, insular cortex, amygdala, and hypothalamus). This chapter briefly reviews the anatomy and functional components of the autonomic nervous system and several anatomical clinical correlations.

Vision ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Feipeng Wu ◽  
Yin Zhao ◽  
Hong Zhang

The autonomic nervous system (ANS) confers neural control of the entire body, mainly through the sympathetic and parasympathetic nerves. Several studies have observed that the physiological functions of the eye (pupil size, lens accommodation, ocular circulation, and intraocular pressure regulation) are precisely regulated by the ANS. Almost all parts of the eye have autonomic innervation for the regulation of local homeostasis through synergy and antagonism. With the advent of new research methods, novel anatomical characteristics and numerous physiological processes have been elucidated. Herein, we summarize the anatomical and physiological functions of the ANS in the eye within the context of its intrinsic connections. This review provides novel insights into ocular studies.


Neuroanatomy ◽  
2017 ◽  
pp. 117-138
Author(s):  
Adam J Fisch

This chapter provides an overview of the autonomic nervous system and respective instructions for drawing its various components. These include the, parasympathetic nervous system, sympathetic nervous system, lower urinary system, baroreceptor reflex, respiration, and digestive tract. The chapter discusses the various functions of elements of these systems, and it presents conditions and illnesses specifically related to disorders in elements of the autonomic nervous system, such as cardiac rhythm abnormalities (arrhythmias), respiratory failure, gut dysmotility, bladder dysmotility, and skin manifestations, such as hair fiber loss and sweating.


How to Land ◽  
2018 ◽  
pp. 107-138
Author(s):  
Ann Cooper Albright

This chapter weaves an in-depth discussion of the physical function of releasing our bodies into the support of gravity with an analysis of how that experience can serve as an important stability in our daily lives. It begins by reviewing the crucial distinction between collapsing and yielding in order to demonstrate how the same force that draws us to the ground can also sponsor our action in the world, helping us find a sense of resistance and agency. In addition, gravity can provide a useful counterbalance to the ubiquitous presence of two-dimensional screens in our lives. By allowing us to experience weight, gravity is key to our sense of grounding, linking inhalation with exhalation, sky to earth, as well as the sympathetic and parasympathetic aspects of our autonomic nervous system.


Author(s):  
Adam Fisch

Chapter 6 discusses how to draw the peripheral nervous system, specifically the autonomic nervous system, including autonomic fiber arrangements, the parasympathetic nervous system, the sympathetic nervous system, the urinary system, and the cardiac reflex.


2019 ◽  
Vol 5 (3) ◽  
pp. 224-232
Author(s):  
Q.C. Vuong ◽  
J.R. Allison ◽  
A. Finkelmeyer ◽  
J. Newton ◽  
J. Durham

Introduction: Dysfunction of the autonomic nervous system (ANS) is seen in chronic fatigue syndrome (CFS) and temporomandibular disorders (TMDs). Both conditions have poorly understood pathophysiology. Several brain structures that play a role in pain and fatigue, such as the insular cortex and basal ganglia, are also implicated in autonomic function. Objectives: ANS dysfunction may point to common neurophysiologic mechanisms underlying the predominant symptoms for CFS and TMD. No studies to date have investigated the combination of both conditions. Thus, our aim was to test whether patients with CFS with or without TMD show differences in brain responses to autonomic challenges. Methods: In this exploratory functional imaging study, patients with CFS who screened positive for TMD (n = 26), patients who screened negative for TMD (n = 16), and age-matched control participants (n = 10) performed the Valsalva maneuver while in a 3-T magnetic resonance imaging scanner. This maneuver is known to activate the ANS. Results: For all 3 groups, whole-brain F test showed increased brain activation during the maneuver in the superior and inferior frontal gyri, the left and right putamen and thalamus, and the insular cortex. Furthermore, group contrasts with small-volume correction showed that patients with CFS who screened positive for TMD showed greater activity in the left insular cortex as compared with patients who screened negative and in the left caudate nucleus as compared with controls. Conclusion: Our results suggest that increased activity in the cortical and subcortical regions observed during autonomic challenges may be modulated by fatigue and pain. ANS dysfunction may be a contributing factor to these findings, and further work is required to tease apart the complex relationship among CFS, TMD, and autonomic functions. Knowledge Transfer Statement: Brain activity related to activation of the autonomic nervous system in patients with chronic fatigue syndrome who screened positive for painful temporomandibular disorder was greater than in patients who screened negative; activity was seen in brain regions associated with autonomic functions and pain. These findings suggest that autonomic dysfunction may play a role in the pathophysiology of both conditions, explain some of the apparent comorbidity between them, and offer avenues to help with treatment.


Author(s):  
Christopher J. Mathias ◽  
David A. Low

The autonomic nervous system innervates all organs, producing predominantly involuntary and automatic actions that are mediated by two principal efferent pathways, the sympathetic and parasympathetic, which are neurochemically and anatomically distinct. Numerous synaptic relays and neurotransmitters allow the autonomic control of organ function at local and central levels to be integrated with the requirements of the whole body....


2020 ◽  
Vol 14 ◽  
Author(s):  
David Johannes Hohenschurz-Schmidt ◽  
Giovanni Calcagnini ◽  
Ottavia Dipasquale ◽  
Jade B. Jackson ◽  
Sonia Medina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document