Toxoplasmosis, sarcocystosis, isosporosis, and cyclosporosis

Author(s):  
J. P. Dubey

Toxoplasmosis is a protozoan disease caused by Toxoplasma gondii. It is widely prevalent in humans and animals throughout the world, especially in the western hemisphere. Virtually all warm-blooded animals can act as intermediate hosts but the life cycle is completed only in cats, the definitive host. Cats excrete the resistant stage of T. gondii (oocysts) in faeces, and oocysts can survive in the environment for months. Humans become infected congenitally, by ingesting undercooked infected meat, or by ingesting food and water contaminated with oocysts from cat faeces. It can cause mental retardation and loss of vision in congenitally infected children and deaths in immunosuppressed patients, especially those with AIDS. There is no vaccine to control toxoplasmosis in humans at the present time but one is available for reduction of fetal losses in sheep.

2019 ◽  
Vol 15 (01) ◽  
pp. 83-84
Author(s):  
B J Thakre ◽  
Joice P Joseph ◽  
Binod Kumar ◽  
Nilima Brahmbhatt ◽  
Krishna Gamit

Taenia spp. are long, segmented, parasitic tapeworms and are relatively uncommon in canine gastrointestinal diseases compared to other tapeworms like Dipylidium caninum. These parasites have an indirect life cycle, cycling between definitive and intermediate hosts. Dogs act as definitive hosts of different species of Taenia including Taenia multiceps, Taenia serialis, Taenia crassiceps, Taenia hydatigena, Taenia pisiformis, etc. Taenia multiceps is of greatest zoonotic relevance in human. In the definitive host, it causes only mild infection. Larvae are more likely to cause disease than adult tapeworms. Taeniasis in pets should be cautiously handled because of its zoonotic importance. This communication reports a case of 3 months old pup suffering from Taenia infection that was successfully managed with a combination of praziquantel and fenbendazole.


EDIS ◽  
2013 ◽  
Vol 2013 (9) ◽  
Author(s):  
John Capinera ◽  
Heather S. Walden

Like many pest and disease problems, rat lungworm has been slowly spreading around the world. First described by Chen from rats in China, the medical significance of this parasite was overlooked until 1944 when it was found infecting humans in Taiwan. Even then, because the report was published in Japanese, its importance remained largely unknown. In 1955, Mackerras and Sandars found this nematode among rats in Brisbane, Australia, and described its life cycle, including the importance of its molluscan intermediate hosts. This 4-page fact sheet was written by John Capinera and Heather S. Walden and published by the UF Department of Entomology and Nematology, September 2013. http://edis.ifas.ufl.edu/in1007


Parasitology ◽  
1994 ◽  
Vol 109 (5) ◽  
pp. 583-589 ◽  
Author(s):  
J. P. Webster

Using both correlational and experimental evidence, the relationship between parasite load and host activity was assessed in brown rats, Rattus norvegicus. Two hypotheses were tested – (1) that parasites with indirect life-cycles, involving transmission between a prey and its predator, will alter the activity of the intermediate host so as to increase its susceptibility to predation by the definitive host and (2) that activity levels in parasitized rats would be increased rather than decreased. Four groups of rats (n = 140) were examined. One group (n = 50) were wild brown rats trapped from 3 UK farmsteads, with naturally occurring parasites. The others were purpose-bred wild/laboratory hybrid rats with experimentally induced parasitic infections of either (n = 15) adult-acquired or (n = 15) congenitally-acquired Toxoplasma gondii (an indirect life-cycle parasite), or (n = 15) Syphacia muris (a direct life-cycle parasite). Uninfected hybrid rats (n = 45), matched for sex, age and weight, served as controls. Rats were housed individually in outdoor cages, and their activities were recorded on video-tapes for 6 non-consecutive 10 h nights. Exercise wheels were also available for the hybrid rats. Out of 6 parasite species detected in the wild rats, T. gondii was the only one which required predation by a definitive host to complete its life-cycle, and was also the only parasite to be associated with higher activity levels in infected than uninfected rats. Hybrid rats infected with T. gondii were also more active than those uninfected, whereas there were no differences in activity levels between S. muris infected and uninfected rats. This study shows that the indirect life-cycle parasite T. gondii can influence the activity of its intermediate host the rat. I suggest that this may facilitate its transmission to the cat definitive host.


2020 ◽  
Author(s):  
Anastasia V. Simakova ◽  
Natalya V. Poltoratskaya ◽  
Irina B. Babkina ◽  
Tatyana N. Poltoratskaya ◽  
Alexander V. Shikhin ◽  
...  

The world’s largest focus of opisthorchiasis caused by cat fluke Opisthorchis felineus Rivolta, 1884, is associated with the Ob-Irtysh basin (Russia). The chapter provides data on the history of discovery and the study of opisthorchiasis. Features of the morphology and life cycle of O. felineus are described. Data on the infection of intermediate hosts (mollusks and cyprinids fish) are provided. Species of fish that have important epizootological significance are indicated. The incidence of opisthorchiasis in the people of different age and social groups, clinical manifestations, pathogenesis, and complications is discussed. The climatic and social factors that contribute to maintaining the focus of opisthorchiasis are described. The measures of personal and social prevention of the people are given.


2013 ◽  
Vol 47 (6) ◽  
pp. 37-42 ◽  
Author(s):  
O. S. Kudlai ◽  
L. N. Yanovich

Abstract Rhopalocercous cercariae were found in the gonads of duck mussels, Anodonta anatina (Linnaeus, 1758) collected from the Sluch River (Zhytomyr oblast, Ukraine). The morphological features observed led to conclusion that this species belonged to the genus Phyllodistomum Braun, 1899. Obtained results suggested that the second intermediate hosts in the life cycle of this trematode were absent. Free-swimming cercariae were observed encysting in water. This species is similar to Phyllodistomum pseudofolium Nybelin, 1926 by overall body proportions and ratio of suckers: lengths of oral to ventral sucker 1 : 1.1; widths of the same organs 1 : 1.2. To confirm the taxonomic position of the species found and establish a possible relationship between it and P. pseudofolium an experimental infection of fish Carassius carassius (Linnaeus, 1758) as potential definitive host was performed. The infection was not successful. Descriptions and figures of all detected larval stages of Phyllodistomum sp. are provided.


1981 ◽  
Vol 36 (11-12) ◽  
pp. 1093-1096 ◽  
Author(s):  
Franz-Rainer Matuschka

Abstract The role of the Western Whip snake Coluber viridißavus was demonstrated as a definitive host for Sarcocystis podarcicolubris sp. nov. of the Italian Wall lizard Podarcis sicula and the Tyrrhenian Wall lizard Podarcis tiliquerta. Sporocysts (9.58 x 6.94 μm) of S. podarcicolubris from a naturally infected snake C. viridißavus were fed to a Sarcocystis free lizard P. sicula and via arthropods Musca domestica to another Sarcocystis free lizard P. tiliquerta. About 3-4 months later sarcocysts could be detected in both lizards. The cysts measured 90-130 μm × 450-550 μm. The cyst wall had 2.5-3 μm long villus like protrusions. The sausage-shaped bradyzoites measured circa 7.7 × 2 μm. Refeeding of the experimentally infected lizards to the snake led to a renewed shedding of sporocysts after a prepatency of 12 -15 days.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wen Han Tong ◽  
Chris Pavey ◽  
Ryan O’Handley ◽  
Ajai Vyas

AbstractToxoplasma gondii is a protozoan parasite with a complex life cycle and a cosmopolitan host range. The asexual part of its life cycle can be perpetually sustained in a variety of intermediate hosts through a combination of carnivory and vertical transmission. However, T. gondii produces gametes only in felids after the predation of infected intermediate hosts. The parasite changes the behavior of its intermediate hosts by reducing their innate fear to cat odors and thereby plausibly increasing the probability that the definitive host will devour the infected host. Here, we provide a short description of such parasitic behavioral manipulation in laboratory rodents infected with T. gondii, along with a bird’s eye view of underpinning biological changes in the host. We also summarize critical gaps and opportunities for future research in this exciting research area with broad implications in the transdisciplinary study of host–parasite relationships.


2004 ◽  
Vol 17 (4) ◽  
pp. 894-902 ◽  
Author(s):  
Ronald Fayer

SUMMARY Sarcocystis species are intracellular protozoan parasites with an intermediate-definitive host life cycle based on a prey-predator relationship. Asexual stages develop in intermediate hosts after they ingest the oocyst stage from definitive-host feces and terminate with the formation of intramuscular cysts (sarcocysts). Sarcocysts in meat eaten by a definitive host initiate sexual stages in the intestine that terminate in oocysts excreted in the feces. Most Sarcocystis species infect specific hosts or closely related host species. For example, humans and some primates are definitive hosts for Sarcocystis hominis and S. suihominis after eating raw meat from cattle and pigs, respectively. The prevalence of intestinal sarcocystosis in humans is low and is only rarely associated with illness, except in volunteers who ingest large numbers of sarcocysts. Cases of infection of humans as intermediate hosts, with intramuscular cysts, number less than 100 and are of unknown origin. The asexual stages, including sarcocysts, can stimulate a strong inflammatory response. Livestock have suffered acute debilitating infections, resulting in abortion and death or chronic infections with failure to grow or thrive. This review provides a summary of Sarcocystis biology, including its morphology, life cycle, host specificity, prevalence, diagnosis, treatment, and prevention strategies, for human and food animal infections.


Parasitology ◽  
2008 ◽  
Vol 135 (8) ◽  
pp. 977-984 ◽  
Author(s):  
V. MEDOC ◽  
J.-N. BEISEL

SUMMARYAmong the potential effects of parasitism on host condition, the ‘increased host abilities’ hypothesis is a counterintuitive pattern which might be predicted in complex-life-cycle parasites. In the case of trophic transmission, a parasite increasing its intermediate host's performance facing non-host predators improves its probability of transmission to an adequate, definitive host. In the present study, we investigated the cost of infection with the acanthocephalanPolymorphus minutuson the locomotor/escape performance of its intermediate host, the crustaceanGammarus roeseli. This parasite alters the behaviour of its intermediate host making it more vulnerable to predation by avian definitive hosts. We assessed the swimming speeds of gammarids using a stressful treatment and their escape abilities under predation pressure. Despite the encystment ofP. minutusin the abdomen of its intermediate host, infected amphipods had significantly higher swimming speeds than uninfected ones (increases of up to 35%). Furthermore, when interacting with the non-host crustacean predatorDikerogammarus villosus, the highest escape speeds and greatest distances covered by invertebrates were observed for parasitized animals. The altered behaviour observed among the manipulated invertebrates supported the ‘increased host abilities’ hypothesis, which has until now remained untested experimentally. The tactic of increasing the ability of infected intermediate hosts to evade potential predation attempts by non-host species is discussed.


1957 ◽  
Vol 31 (4) ◽  
pp. 203-224 ◽  
Author(s):  
Roy C. Anderson

The evolution of the life cycles of the members of the family Dipetalonematiidae Wehr, 1935 (Filarioidea) is considered in the light of existing knowledge of spirurid nematodes. The hypothesis that the life cycles of the dipetalonematids originated from life cycles similar to those of Draschia megastoma, Habronema muscae and H. microstoma is considered to be incorrect. Alternatively, it is pointed out that in the primitive subfamily Thelaziinae Baylis and Daubney, 1926 there are forms with typical spiruroid life cycles (Rhabdochona ovifilamenta), forms with life cycles approaching those of the dipetalonematids (Thelazia spp.), and forms with life cycles intermediate between these two (Oxyspirura spp.). It is suggested that intestinal species similar to Rhabdochona gave rise to the more specialized spiruroids and forms that left the gut (Oxyspirura, Thelazia) gave rise to the dipetalonematids.The dipetalonematids are believed to have originated from nematodes resembling the species of Thelazia and having life cycles like those of T. rhodesii, T. skrjabini and T. gulosa. Some of these worms established themselves in subcutaneous tissues. Like Parafilaria multipapillosa, they released their eggs through a break in the skin of the definitive host, thus causing a skin lesion that attracted various haematophagous arthropods which finally became involved as intermediate hosts in the life cycle. Certain species like the members of Parafilaria and Stephanofilaria (?) came to rely upon intermediate hosts that were unable to break the skin of the definitive host (Musca) and cutaneous lesions became permanent features of their life cycles. Other species became dependent upon intermediate hosts that could puncture the skin (mosquitoes, simuliids etc.) and skin lesions became unnecessary to the life cycle. The larvae of these worms then began to spread into the tissues of the skin, as found in Stephanofilaria, Onchocerca, and some species of Dipetalonema, and the infective larvae developed the ability to penetrate into the wound made by the intermediate host and perhaps, in some cases, the intact skin. Ultimately the larvae of some species habitually entered, or were deposited into, the blood stream and the adult worms were then free to colonize the vertebrate body as their larvae would then be available to the intermediate host no matter where the latter fed on the body of the definitive host; this group of worms gave rise to the many members of the family Dipetalonematidae.The family Filariidae Claus, 1883 is briefly reviewed in the light of the above hypothesis. It is pointed out that many species, e.g. Diplotriaeninae Skrjabin, 1916, live in the air sacs of reptiles and birds and probably have life cycles similar to that of Diplotriaenoides translucidus, i.e. the eggs pass through the lungs, up the trachea and out in the faeces. It is thought that these forms may represent a separate line of evolution from that which gave rise to the Dipetalonematidae. Certain genera (Lissonema, Aprocta), occurring in the orbits of birds, probably have life cycles like Thelazia or Oxyspirura. Many other genera occurring in superficial muscles and subcutaneous tissues (Squamofilaria, Ularofilaria, Tetracheilonema, Pelecitus, Monopetalonema) may release their eggs through some sort of skin lesion. Studies on these forms are urgently needed as the details of their life cycles may shed fresh light on the origins of the more specialized filarioids.


Sign in / Sign up

Export Citation Format

Share Document